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About this Course

Model building and evaluation are necessary but not sufficient skills for the effective practice
of data science. In this module you will develop the technical and personal skills that are
required to work successfully as a data scientist within an organisation.

During this module you will critically explore how to:

• effectively scope and manage a data science project;
• work openly and reproducibly;
• efficiently acquire, manipulate, and present data;
• interpret and explain your work for a variety of stakeholders;
• ensure that your work can be put into production;
• assess the ethical implications of your work as a data scientist.

This interdisciplinary course will draw from fields including statistics, computing, manage-
ment science and data ethics. Each topic will be investigated through a selection of lecture
videos, conference presentations and academic papers, supported by hands-on lab exercises
and readings on industry best-practices as published by recognised professional bodies.

Schedule

These notes are intended for students on the course MATH70076: Data Science in the
academic year 2023/24.

As the course is scheduled to take place over five weeks, the suggested schedule is:

• 1st week: effective data science workflows;
• 2nd week: acquiring and sharing data;
• 3rd week: exploratory data analysis and visualisation;
• 4th week: preparing for production;
• 5th week: ethics and context of data science.

An alternative pdf version of these notes may be downloaded here. Please be aware that this
pdf version is secondary to this course webpage and will be updated less frequently.
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Learning outcomes

On successful completion of this module students should be able to:

1. Independently scope and manage a data science project;
2. Source data from the internet through web scraping and APIs;
3. Clean, explore and visualise data, justifying and documenting the decisions made;
4. Evaluate the need for (and implement) approaches that are explainable, reproducible

and scalable;
5. Appraise the ethical implications of a data science projects, particularly the risks of

compromising privacy or fairness and the potential to cause harm.

Allocation of Study Hours

Lectures: 10 Hours (2 hours per week)

Group Teaching: 5 Hours (1 hour per week)

Lab / Practical: 10 hours (2 hours per week)

Independent Study: 100 hours (11 hours per week + 45 hours coursework)

Drop-In Sessions: Each week there will be a 2-hour optional drop-in session to address any
questions about the course or material. This is where you can get support from the course
lecturer or GTA on the topics covered each week, either individually or in small groups.

These will be held on Fridays 15:00-17:00 in Huxley 711C.

Office Hours: Additionally, there will be an office hour each week. This is a weekly opportu-
nity for 1-1 discussion with the course lecturer to address any individual questions, concerns
or problems that you might have. These meetings can be in person or on Teams and can be
academic (relating to course content or progress) or pastoral (relating to student well-being)
in nature. To book a 1-1 meeting please use the link on the course blackboard page.

Office hours will be held on Mondays 15:00-16:00 in Huxley 6M20. (Week 3 alteration, 14:00-
15:00)

Assessment Structure

The course will be assessed entirely by coursework, reflecting the practical and pragmatic
nature of the course material.

Coursework 1 (30%): To be completed during the final week of the course, the week
commencing 2024-02-12.
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Coursework 2 (70%): To be released during the third week of the course and submitted
following the examination period in Summer term (2024-01-29 until 2024-05-15 at 13:00).

Acknowledgements

These notes were created by Dr Zak Varty. They were inspired by a previous lecture series by
Dr Purvasha Chakravarti at Imperial College London and draw from many resource that were
made available by the R community, which are attributed throughout.
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Part I

Effective Workflows
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Introduction

As a data scientist you will never work alone.

Within a single project as a data scientist it is likely that you will interact with a range of
other people, including but not limited to: one or more project managers, stakeholders and
subject matter experts. Depending on the type of work that you are doing, these experts
might come from a single specialism or form a multi-disciplinary team. To get your project
put into production and working at scale you will likely have to collaborate with data engineers.
You’re also likely to work closely with other data scientists, reviewing one another’s work or
collaborating on larger projects. Familiarity with the skills, processes and practices that make
for effective collaboration is therefore instrumental to being a successful as a data scientist.

The aim for this part of the course is to provide you with a structure on how you organise and
perform your work, so that you can be a good collaborator to current colleges and your future
self.

This is going to require a bit more effort upfront, but the benefits will compound over time. You
will get more done by wasting less time staring quizzically at messy folders of indecipherable
code. You will also gain a reputation of someone who is good to work with. This promotes
better professional relationships and greater levels of trust, which can in turn lead to working
on more exciting and impactful projects.
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1 Organising your work

Welcome to this course on effective data science. This week we’ll be considering effective data
science workflows. These workflows are ways of progressing a project that will help you to
produce high quality work and help to make you a better collaborator.

In this chapter, we’ll kick things off by looking at how you can structure data science projects
and organise your work. Familiarity with these skills, processes and practices for collaborative
working will be instrumental to you become a successful data scientist.

1.1 What are we trying to do?

First, let’s consider why we want to provide our data science projects with some sense of
structure and organization.

As a data scientist you’ll never work alone. Within a single project you’ll interact with a whole
range of other people. This might be a project manager, one or more business stakeholders or
a variety of subject matter experts. These experts might be trained as sociologists, chemists,
or civil servants depending on the exact type of data science work that you’re doing.

To then get your project put into use and working at scale you’ll have to collaborate with data
engineers. You’ll also likely work closely with other data scientists. For smaller projects this
might be to act as reviewers for one another’s work. For larger projects, working collaboratively
will allow you to tackle larger challenges. These are the sorts of project that wouldn’t be feasible
alone, because of the inherent limitations on the time and skill of any one individual person.

Even if you work in a small organization, where you’re the only data scientist, then working in
a way that is optimised for collaboration will pay dividends over time. This is because when
you inevitably return to your current project in several weeks, months or years. At that point
you will have forgotten almost everything that you did the first time around, let alone why
you chose to do it that way. You’ll have forgotten about not only the decisions that you made,
but also alternative options that you decided against.

This is exactly like working with a current colleague who has poor communication skills and
working practices. Nobody wants to be that colleague to somebody else, let alone to their
future self. Treating that future self like a current collaborator will make you a kind colleague
and a pleasure to work with.
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In addition to this, you’ll get more done by wasting less time staring quizzically at a mess of
folders and indecipherable code. You’ll also get a reputation as someone who is well-organized
and enjoyable to work with. This promotes better professional relationships and greater levels
of trust within your team. These can then, in turn, tead to you working on more exciting and
more impactful projects in the future.

The aim of this week is to provide you with a guiding structure on how to organize and perform
your work. None of this is going to be particularly difficult or onerous. However it will require
some up-front effort and daily discipline to maintain. As with brushing your teeth and flossing,
the daily effort required is not large but the benefits compound over time.

1.2 An R Focused Approach

The structures and workflows that are recommend here and throughout the rest of this module
are focused strongly on a workflow that predominantly uses R, markdown and LaTeX.

Similar techniques, code and software can achieve the same results that I show you here when
coding in Python or C, or when writing up projects in JuPyteR notebooks or using some other
markup language. Similarly, different organizations have their own variations on these best
practices that we’ll go through together. Often organisations will have extensive guidance on
these topics.

The important thing is that once you understand what good habits are and have built them
in one programming language or business, then transferring these skills to a new setting is
largely a matter of learning some new vocabulary or slightly different syntax.

With that said, let’s get going!

1.3 One Project = One Directory

If there’s one thing you should take away from this chapter, it’s this one Golden Rule:

Every individual project you work on as a data scientist should be in a single,
self-contained directory or folder.

This is worth repeating. Every single project that you work on should be self-contained and
live in a single directory. An analogy here might be having a separate ring-binder folder for
each of your modules on a degree program.

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-1.png"
knitr::include_graphics(path = image_path)
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This one golden rule is deceptively simple.

The first issue here is that it requires a predetermined scope of what is and what isn’t going
to be covered by this particular project. This seems straightforward but at the outset of the
project you often don’t know exactly where your project will go, or how it will link to other
pieces of work within your organization.

The second issue is that the second law of Thermodynamics applies equally well to project
management as it does to tidying your bedroom or the heatdeath of the universe. It takes
continual external effort to prevent the contents of this one folder from becoming chaotic and
disordered over time.

That being said, having a single directory does have several benefits that more than justify
this additional work.

1.4 Properties of a Well-Orgainsed Project

What are the properties that we would like this single, well-organized project to have?

Ideally, we’d like to organize our project so that it has the following properties:

• Portable
• Version Control Friendly
• Reproducible
• IDE friendly.

Don’t worry if you haven’t heard of some of these terms already. We’re going to look at each
of them in a little bit of detail.
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1.4.1 Portability

A project is said to be portable if it can be easily moved without breaking.

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-2.png"
knitr::include_graphics(path = image_path)

This might be a small move, like relocating the directory to a different location on your own
computer. It might also mean a moderate move, say to another machine if yours dies just
before a big deadline. Alternatively, it might be a large shift - to be used by another person
who is running a different operating system.

From this small thought experiment, you can see that there’s a full spectrum of how portable
a project may or may not need to be.

1.4.2 Version Control Friendly

A project under Version Control has all changes tracked either manually or automatically. This
means that snapshots of the project are taken regularly as it gradually develops and evolves
over time. Having these snapshots as many, incremental changes are made to the project allow
it to be rolled back to a specific previous state if something goes wrong.

A version controlled pattern of working helps to avoid the horrendous state that we have all
found ourselves in - renaming final_version.doc to final_final_version.doc and so on.

By organising your workflow around incremental changes, you acknowledge that no work is
ever finally complete. There will always be small changes that need to be done in the future.
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1.4.3 Reproducibility

A study is reproducible if you can take the original data and the computer code
used to analyze the data and recreate all of the numerical findings from the study.

Broman et al (2017). “Recommendations to Funding Agencies for Supporting
Reproducible Research”

In their paper, Broman et al define reproducibility as a project where you can take the original
data and code used to perform the analysis and using these we create all of the numerical
findings of the study.

This definition leads naturally to several follow-up questions.

Who exactly is you in this definition? Does it specifically mean yourself in the future or should
someone else with access to all that data and code be able to recreate your findings too? Also,
should this reproducibility be limited to just the numerical results? Or should they also be
able to create the associated figures, reports and press releases?

Another important question is when this project needs to be reproduced. Will it be in a
few weeks time or in 10 years time? Do you need to protect your project from changes in
dependencies, like new versions of packages or modules? How about different versions of R or
Python? Taking this time-scale out even further, what about different operating systems and
hardware?

It’s unlikely that you would consider someone handing you a floppy disk of code that only runs
on Windows XP to be acceptably reproducible. Sure, you could probably find a way to get it
to work, but that would be an awful lot of effort on your end.

That’s perhaps a bit of an extreme example, but it emphasizes the importance of clearly
defining the level of reproducibility that you’re aiming for within every project you work on.
This example also highlights the amount of work that can be required to reproduce an analysis,
especially after quite some time. It’s important to explicitly think about how we are dividing
that effort between ourselves as the original developer and the person trying to reproduce the
analysis in the future.

1.4.4 IDE Friendly

Our final desirable property is that we’d like our projects to play nicely with integrated devel-
opment environments.

When you’re coding document and writing your data science projects it would be possible for
you to work entirely in either a plain text editor or typing code directly at the command line.
While these approaches to a data science workflow have the benefit of simplicity, they also
expect a great deal from you as a data scientist.
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These workflows expect you to type everything perfectly accurately every time, that you recall
the names and argument orders of every function you use, and that you are constantly aware
of the current state of all objects within your working environment.

Integrated Development Environments (IDEs) are applications to help reduce this burden,
allowing you a to be more effective programmer and data scientist. IDEs offer tools like code
completion and highlighting that make your code easier to write and to read. They offer
tools for debugging, to fix your code when (not if!) things are going wrong. IDEs also offer
environment panes so that you don’t have to hold everything in your head all at once. Many
IDEs have additional templating facilities. These let you save and reuse snippets of code
so that you can avoid typing out repetitive, boilerplate code and introducing errors in the
process.

Even if you haven’t heard of IDEs before, you’ve likely already used one. Some common
examples might be RStudio for R-users, PyCharm for python users, or Visual Studio as a
more language agnostic coding environment. Whichever of these we use, we’d like our project
to play nicely with them. This lets us reap their benefits while keeping our project portable,
version controlled, and reproducible for someone working with a different set-up.

1.5 Project Structure

We have given a pretty exhaustive argument for why having a single directory for each project
is a good idea. Let’s now take a look inside that directory and define a common starting layout
for the content of all of your projects.

Having this sort of project directory template will mean that you’ll always know where to
find what you’re looking for and other members of your team will too. Again, before we start
I’ll reiterate that we’re taking an opinionated approach here and providing a sensible starting
point for organizing many projects.

Every project is going to be slightly different and some might require slight alterations to what
I suggest here. Indeed, even if you start as I suggest then you might have to adapt your project
structure as it develops and grows. I think it’s helpful to consider yourself as a tailor when
making these changes. I’m providing you with a one size fits all design, that’s great for lots
of projects but perfect for none of them. It’s your job to alter and refine this design for each
individual case.

One final caveat before we get started: companies and businesses usually have a house style
for how to write and organize your code or projects. If that’s the case, then follow the style
guide that your business or company uses. The most important thing here is to be consistent
at both an individual level and across the entire data science team. It’s this consistency that
reaps the benefits, not the particular structure.
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Okay, so imagine now that you’ve been assigned an exciting new project and have created a
single directory in which to house that project. Here we’ve, quite imaginatively, called that
directory exciting-new-project. What do we populate this folder with?

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-3.png"
knitr::include_graphics(path = image_path)

In the rest of this chapter, I’ll define the house-style for organizing the root directory of your
data science projects in this module.

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-4.png"
knitr::include_graphics(path = image_path)
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Within the project directory there will be some subdirectories. You can tell that these are
folders in this file structure diagram because they have a forward-slash following their names.
There will also be some files directly in the root directory. One of these is called readme.md
and the another called either makefile or make.r. We will explore each of these files and
directories in turn.

1.5.1 README.md

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-5.png"
knitr::include_graphics(path = image_path)
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Let’s begin with the readme file. This gives a brief introduction to your project and gives
information on what the project aims to do. The readme file should describe how to get
started using the project and how to contribute to its development.

The readme is written either in a plain text format so readme.txt or in markdown format
readme.md. The benefit of using markdown is that it allows some light formatting such as
sections headers and lists using plain text characters. Here you can see me doing that by using
hashes to mark out first and second level headers and using bullet points for a unnumbered
list. Whichever format you use, the readme file for your project is always stored in the root
directory and is typically named in all uppercase letters.

The readme file should be the first thing that someone who’s new to your project reads. By
placing the readme in the root directory and capitalising the file name you are increase the
visibility of this file and increase the chances of this actually happening.

An additional benefit to keeping the readme in the root directory of your project is that code
hosting services like GitHub, GitLab or BitBucket will display the contents of that readme file
next to the contents of your project, nicely formatting and displaying any markdown synax
that you use.

When writing the readme it can be useful to imaginge that you’re writing this for a new,
junior team member. The readme file should let them get started with the project and make
some simple contributions after reading only that file. It might also link out to more detailed
project documentation that helps the new team member toward having a more advanced
understanding of the project or making a more complex contribution.

1.5.2 Inside the README

Let’s take a moment to cover in more detail what should be included within a readme file.

1.5.2.1 Project name and status

A readme we should include the name of the project, which should be self-explanatory (so
nothing like my generic choice of exciting-new-project). The readme should also give the
project status, which is just a couple of sentences to say whether your project is still under
development, the version oft the current release or, on the other end of the project life-cycle,
if the project is being deprecated or closed.

Following this, we should also include a description of your project. This will state the purpose
of your work and to provide, or link to, any additional context or references that visitors aren’t
assumed to be familiar with.
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1.5.2.2 Code dependencies and examples

If your project involves code or depends on other packages then you should give some instruc-
tion on how to install those dependencies and run your code. This might just be text but it
could also include things like screenshots, code snippets, gifs or a video of the whole process.

It’s also a good practice to include some simple examples of how to use the code within your
project an the expected results, so that new users can confirm that everything is working on
their local instance. Keep the examples as simple and minimal as you can so that new users

For longer or more complicated examples that aren’t necessary in this short introductory
document you can add links to those in the readme and explain them in detail elsewhere.

1.5.2.3 How to contribute

There should ideally be a short description of how people can report issues with the project
and also how people can get started in resolving those issues or extend the project in some
way.

That leads me on to one point that I’ve forgotten to list here. There there should be a section
listing the authors of the work and the license in which under which it’s distributed. This is to
give credit to all the people who’ve contributed to your project and the license file then says
how other people may use your work. The license declares how other may use your project
and whether they have to give direct attribution to your work in any modifications that they
use.

1.5.3 data

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-7.png"
knitr::include_graphics(path = image_path)

25



Moving back to our project structure, next we have the data directory.

The data directory will have two subdirectories one called raw and one called derived. All
data that is not generate as part of your project is stored in the raw subdirectory. To ensure
that a project is reproducible, data in the raw folder should never be edited or modified.

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-8.png"
knitr::include_graphics(path = image_path)

In this example we’ve got two different data types: an Excel spreadsheet and a JSON file.
These files are exacty as we received them from our project stakeholder.
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A plain text file, metadata.txt explains the contents and interpretation of each of the raw
data sets. This metadata should include descriptions of all the measured variables, the units
that are recorded in, the date the file was created or acquired, and the source from which it
was obtained.

The raw data most likely is not going to be in a form that’s amenable to analyzing straight
away. To get the data into a more pleasant form to work with, we will need to do some data
manipulation and cleaning. Any operations applied when cleaning the raw data should be well
documented and the resulting cleaned files are saved within the derived data directory for
use in our modelling or analysis.

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-12.png"
knitr::include_graphics(path = image_path)

In our exciting new project, we can see the cleaned versions of the previous data sets that are
ready for modelling. There is also a third file in this folder. This is data that we’ve acquired
for ourselves through web scraping, using a script within the project.

1.5.4 src

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-16.png"
knitr::include_graphics(path = image_path)
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The src or source directory contains all the source code for your project. This will typically
be the functions that you’ve written to make the analysis or modelling code more accessible.

In this project, we have saved each function in its own R script and used subdirectories to
organise these by their use case. We have two functions used in data cleaning: the first replaces
NA values with a user specified value, the second function replaces missing values by the mean
of all non-missing values.

We also have three helper functions: the first two calculate the rolling mean and the geometric
mean of a given vector, while the third is a function to scrape the web data we previously
found in the derived data subdirectory.

1.5.5 tests

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-12.png"
knitr::include_graphics(path = image_path)
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The structure of the tests/ directory mirrors that of the source directory. Each function file
has its own counterpart file of tests.

These test files provide example sets of inputs and the expected outputs for each function. The
test files are used to check edge cases of a function and to assure yourself that you didn’t break
anything while you are fixing some small bug or adding new capabilities to that function.

1.5.6 analyses

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-23.png"
knitr::include_graphics(path = image_path)
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The analyses directory contains what you probably think of as the bulk of your data science
work. It’s going to have one subdirectory for each major analysis that’s performed within
your project and within each of these there might be a series of steps which we separate into
separate scripts.

The activity performed at each step is made clear by the name of each script, as is the order
in which we’re going to perform these steps. Here we can see the scripts used for the 2021
annual report. First is a script used to take the raw monthly receipts and produce the cleaned
version of the same data set that we saw earlier. This is followed by a trend analysis of this
cleaned data set.

Similarly for the spending review we have a data cleaning step, followed by some forecast
modelling and finally the production of some diagnostic plots to compare these forecasts.

1.5.7 outputs

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-26.png"
knitr::include_graphics(path = image_path)
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The outputs directory has again one subdirectory for each meta-analysis within the project.
These are then further organized by the output type, whether that be some data, a figure, or
a table.

Depending on the nature of your project, you might want to use a modified subdirectory
structure here. For example, if you’re doing several numerical experiments then you might
want to arrange your outputs by experiment, rather than by output type.

1.5.8 reports

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-29.png"
knitr::include_graphics(path = image_path)
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The reports directory is then where everything comes together. This is where the written
documents that form the final deliverables of your project are created. If these final documents
are written in LaTeX or markdown, both the source and the compiled documents can be found
within this directory.

When including content in this report, for example figures, I’d recommend against making
copies of those figure files within the reports directory. If you do that, then you’ll have to
manually update the files every time you modify them. Instead you can use relative file paths
to include these figures. Relative file paths specify how to get to the image, starting from your
TeX document and moving up and down through the levels of your project directory.

For example when including a figure in the annual report you might use the following code to
include a figue within the markdown source code.

![](../../outputs/2021-annual-report/figures/2021-student-survey-histogram.png)

While in the spending review, the company logo might be included in the LaTeX source code
as follows.

\includegraphics[width=0.2\textwidth]{images/logo.svg}

If you’re not using markdown or LaTeX to write your reports, but instead use an online
platform like Overleaf as a LaTeX editor or Google Docs to write collaboratively then add
links to these in the reports directory by adding additional readme files. Make sure you set
the read and write permissions for those links appropriately, too!
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When using these online writing systems, you’ll have to manually upload and update your
plots and other outputs whenever you modify any of your earlier analysis. That’s one of the
drawbacks of these online tools that has to be traded off against their ease of use.

In our exciting new project, the annual report is written in a markdown format, which is
compiled to both HTML and PDF. The spending review is written in LaTeX and we only
have the source for it, we don’t have the compiled pdf version of the document but should be
able to create this for ourselves using the materials provided.

1.5.9 make file

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-32.png"
knitr::include_graphics(path = image_path)

The final element of our template project structure is a makefile. We aren’t going to cover
how to read or write make files in this course. Instead, I’ll give you a brief description of what
one is and what it is supposed to do.

At a high level, the makefile is just another text file. What makes it special is what it contains.
Similar to a shell or a bash script, a makefile contains code that can be run at the command
line. This code will create or update each element of your project.

The makefile makes this easier by defining shorthand commands for the full lines of code
that create each element of your project (running R scripts, compiling LaTeX documents and
so on). The makefile also records the order in which these operations have to happen and
which of these steps are dependent on one another. This means that if a single step part of
your project is updated then any changes will be propagated through your entire project. This
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is done in quite a clever way, so the only part of your projects that are re-run are those which
need to be updated.

We’re omitting the writing of makefiles from this course not because they’re fiendishly difficult
to write or read, but rather because they require a reasonable foundation in working at the
command line to be understood. What I suggest you do instead throughout this course is to
create your own make.R or make.md file. This file will define the intended running order and
dependencies of your project and if it is an R file might also automate some parts of your
analysis.

If you’d like to learn more about makefiles, some good resoruces are:

• Monash Informatics Platform (Motivates makefiles via compiling Rmd to multiple output
formats)

• Rob Hyndman blog post (Old, but motivates use well)
• Makefile tutorial (Pretty and current but extensive and with a CS focus)

1.6 Wrapping up

Wrapping up then, that’s everything for this chapter.

We have introduced a project structure that will serve you well as a baseline for the vast
majority of projects in data science.

image_path <- "images/101-workflows-organising-your-work/directory-structure-drawings/directory-structure-drawing-33.png"
knitr::include_graphics(path = image_path)
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In your own work, remember that the key here is standardisation. Working consistently across
projects, a company or a group is more important than sticking rigidly to the particular
structure that I have defined here.

There are two notable exceptions where you probably don’t want to use this project structure.
That’s when you’re building an app or you’re building a package. These require specific
organisation of the files within your project directory. We’ll explore the project structure used
for package development during the live session this week.

1.7 Session Information

pander::pander(sessionInfo())

R version 4.3.1 (2023-06-16)

Platform: x86_64-apple-darwin20 (64-bit)

locale: en_US.UTF-8||en_US.UTF-8||en_US.UTF-8||C||en_US.UTF-8||en_US.UTF-8

attached base packages: stats, graphics, grDevices, utils, datasets, methods and base

loaded via a namespace (and not attached): compiler(v.4.3.1), fastmap(v.1.1.1),
cli(v.3.6.2), tools(v.4.3.1), htmltools(v.0.5.7), rstudioapi(v.0.15.0), yaml(v.2.3.8), Rcpp(v.1.0.11),
pander(v.0.6.5), rmarkdown(v.2.25), knitr(v.1.45), jsonlite(v.1.8.8), xfun(v.0.41), di-
gest(v.0.6.33), rlang(v.1.1.2), png(v.0.1-8) and evaluate(v.0.23)
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2 Naming Files

2.1 Introduction

“There are only two hard things in Computer Science: cache invalidation and
naming things.”

Phil Karlton, Netscape Developer

When working on a data science project we can in principle name directories, files, functions
and other objects whatever we like. In reality though, using an ad-hoc naming system is likely
to cause confusion, mistakes and headaches. We obviously want to avoid all of those things in
the spirit of being kind to our current colleges and also to our future selves.

Coming up with good names is a bit of an art form, it’s an activity that you get better at with
practice. Another similarity to art is that the best naming systems don’t come from giving
data scientists free reign over their naming system. The best approaches to naming things
give you strong guidelines and boundaries within which to express your creativity and skill.

In this chapter we’ll explore what these boundaries and what we want them to achieve for
us. The content of this chapter is based largely around a talk of the same name given by
Jennifer Bryan and the tidyverse style guide, which forms the basis of Google’s style guide for
R programming.

The core principles we introduce hold across most high-level programming languages. Just
like in natural languages, there are differences in how the principles are implemented between
languages and between different groups of people who use each language. A fun aspect of this
is that people often develop a code “accent” based on their “native” programming language.

If you’d like to check out how this guidance translates to Python, check out the naming
conventions section of the PEP8 style guide.

2.2 Naming Files

We’ll be begin by focusing in on what we call our files. That is, we’ll first focus on the part
of the file name that comes before the dot. Later in the chapter, we’ll cycle back around to
discuss file extensions.
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2.2.1 What do we want from our file names?

To decide how we name our files, we should first consider what we want from our file naming
system. There are three key properties that that we would like to satisfy.

1. Machine Readable
2. Human Readable
3. Order Friendly

Thee first desirable property is for file names to be easily readable by computers, the second
is for the file names to be easily readable by humans and finally the file names should take
advantage of the default ordering imposed on our files.

This set of current file names is sorely lacking across all of these properties:

abstract.docx
Effective Data Science's module guide 2022.docx
fig 12.png
Rplot7.png
1711.05189.pdf
HR Protocols 2015 FINAL (Nov 2015).pdf

We want to provide naming conventions to move us toward the better file names listed below.

2015-10-22_human-resources-protocols.pdf
2022_effective-data-science-module-guide.docx
2022_RSS-conference-abstract.docx
fig12_earthquake-timeseries.png
fig07_earthquake-location-map.png
ogata_1984_spacetime-clustering.pdf

Let’s take a few minutes to examine what exactly we mean by each of these properties.

2.2.2 Machine Readable

What do we mean by machine readable file names?

• Easy to compute on by deliberate use of delimiters:

– underscores_separate_metadata, hyphens-separate-words.

• Play nicely with regular expressions and globbing:
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– avoid spaces, punctuation, accents, cases;
– rm Rplot*.png

Machine readable names are useful when:

• managing files: ordering, finding, moving, deleting:

• extracting information directly from file names,

• working programmatically with file names and regex.

2.2.2.1 Computing on File Names

When we are operating on a large number of files it is useful to be able to work with them
programmatically.

One example of where this might be useful is when downloading and marking assessments.
This requires me to download and unzip a large number of compressed folders, copying the
pdf report from each unzipped folder into a single directory and then repeat this, moving all
of the R scripts from each unzipped folder into a second directory. The marked scripts and
code then need to be paired back up in folders named by student, and re-zipped ready to be
returned.

This is monotonously dull and might work for ~50 students but would not scale to a class of
~5000. Working programmatically with files is the way to get this job done efficiently. This
requires the file names to play nicely with the way that computers interpret file names, which
they regard as a string of characters.

It is often helpful to have some meta-data included in the file name, for example the student’s
id number and the assessment title. We will use an underscore (_) to separate elements of
meta-data within the file name and a hyphen (-) to separate sub-elements of meta-data, for
example words within the assessment title.

001562679_assessment-1.tex
001562679_assessment-1.pdf
001562679_assessment-1.r

2.2.2.2 Regular expressions and Globbing

Regular expressions and globbing are two ideas from string manipulation that you may not
have met, but which will inform our naming conventions.

Regular expressions allow you to search for strings (in our case file names) that match a
particular pattern. Regular expressions can do really complicated searches but become gnarly
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when you have to worry about special characters like spaces, punctuation, accents and cases,
so these should be avoided in file names.

A special type of regular expression is called a glob. The most common use of globbing is the
use of an asterisk (*) to replace any number of subsequent characters in a file name. Globbing
becomes particular powerful when you use a consistent structure to create your file names. We
might, for example, delete all png images in our wokring directory that begin with Rplot using
a single line of code at the command line: rm Rplot*.png.

Having machine readable file names is particularly useful when managing files, such as ordering,
finding, moving or deleting them. Another common use case is when an analysis requires you
to load a large number of individual data files. Machine readable file names are also useful in
this setting for extracting meta-information from files without having to open them in memory.
This is particularly useful when the files might be too large to load into memory, or you only
want to load data from a certain year.

The final benefit we list here is the scalability, reduction in drudgery and lowered risk for
human error when operating on a very large number of files.

2.2.3 Order Friendly

The next property we will focus on also links to how computers operate. We’d like our file
names to exploit the default orderings used by computers. This means starting file names with
character strings or metadata that allow us order our files in some meaningful way.

2.2.3.1 Running Order

One example of this is where there’s some logical order in which your code should be executed,
as in the example analysis below.

diagnositc-plots.R
download.R
runtime-comparison.R
...
model-evaluation.R
wrangle.R

Adding numbers to the start of these file names can make the intended ordering immediately
obvious.
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00_download.R
01_wrangle.R
02_model.R
...
09_model-evaluation.R
10_model-comparison-plots.R

Starting single digit numbers with a leading 0 is a very good idea here to prevent script 1
being sorted in with the tens, script 2 in with the twenties and so on. If you might have over
100 files, for example when saving the output from many simulations, use two or more zeros
to maintain this nice ordering.

2.2.3.2 Date Order

A second example of orderable file names is when the file has a date associated with it. This
might be a version of a report or the date on which some data were recorded, cleaned or
updated.

2015-10-22_human-resources-protocols.pdf
...
...
2022-effective-data-science-module-guide.docx

When using dates, in file names or elsewhere, you should conform to the ISO standard date
format.

ISO 8601 sets an international standard format for dates: YYYY-MM-DD.

This format uses four numbers for the year, followed by two numbers for the month and two
numbers of the day of the month. This structure mirrors a nested file structure moving from
least to most specific. It also avoids confusion over the ordering of the date elements. Without
using the ISO standard a date like 04-05-22 might be interpreted as the fourth of May 2022,
the fifth of April 2022, or the twenty-second of May 2004.

2.2.4 Human Readable

The final property we would like our file names to have is human readability. This requires
the names of our files to be meaningful, informative and easily read by real people.

The first two of these are handled by including appropriate metadata in the file name. The
ease with which these are read by real people is determined by the length of the file name and
by how that name is formatted.
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There are lots of formatting options with fun names like camelCase, PascalCase, and
snake_case.

easilyReadByRealPeople (camelCase)
EasilyReadByRealPeople (PascalCase)
easily_read_by_real_people (snake_case)
easily-read-by-real-people (skewer-case)

There is weak evidence to suggest that snake case and skewer case are most the readable. We’ll
use a mixture of these two, using snake case between metadata items and skewer case within
them. This has a slight cost to legibility, in a trade-off against making computing on these file
names easier.

The final aspect that you have control over is the length of the name. Having short, evocative
and useful file names is not easy and is a skill in itself. For some hints and tips you might want
to look into tips for writing URL slugs. These are last part of a web address that are intended
to improve accessibility by being immediately and intuitively meaningful to any user.

2.2.5 Naming Files - Summary

1. File names should be meaningful, informative and scripts end in .r

2. Stick to letters, numbers underscores (_) and hyphens (-).

3. Pay attention to capitalisation file.r ≠ File.r on all operating systems.

4. Show order with left-padded numbers or ISO dates.

2.3 File Extensions and Where You Work

So far we have focused entirely on what comes before the dot, that is the file name. Equally
if not more important is the file extension that comes after the dot.

example-script.r
example-script.py

project-writeup.doc
project-writeup.tex
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The file extension describes how information is stored in that file and determines the software
that can use, view or run that file.

You likely already use file extensions to distinguish between code scripts, written documents,
images, and notebook files. We’ll now explore the benefits and drawbacks of various file types
with respect to several important features.

2.3.1 Open Source vs Proprietary File Types

The first feature to consider is whether the file type is open source and can be used by anyone
without charge or if specialist software must be paid for to interact with those files.

image_path <- "images/102-workflows-naming-files/file-types-image.png"
knitr::include_graphics(path = image_path)

In the figure above, each column represents a different class of file, moving left to right we
have example file types for tabular data, list-like data and text documents. File types closer
to the top are open source while those lower down rely on proprietary software, which may or
may not require payment.

To make sure that our work is accessible to as many people as possible we should favour the
open source options like csv files over Google sheets or excel, JSON files over Matlab data files,
and tex or markdown over a word or Google doc.

This usually has a benefit in terms of project longevity and scalability. This is because open
source file types are often somewhat simpler in structure, making them more robust to changes
over time and less memory intensive.
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To see this, let’s take a look inside some data files.

2.3.2 Inside Data Files

2.3.2.1 Inside a CSV file

CSV or comma separated value files are used to store tabular data.

In tabular data, each row of the data represents one record and each column represents a
data value. A csv encodes this by having each record on a separate line and using commas to
separate values with that record. You can see this by opening a csv file in a text editor such
as notepad.

The raw data stores line breaks using \n and indicates new rows by \r. These backslashed
indicae that these are escape characters with special meanings, and should not be literally
interpreted as the letters n and r.

library(readr)
read_file(file = "images/102-workflows-naming-files/example.csv")

[1] "Name,Number\r\nA,1\r\nB,2\r\nC,3"

When viewed in a text editor, the example file would look something like this.

Name,Number
A,1
B,2
C,3

2.3.2.2 Inside a TSV file

TSV or tab separated value files are also used to store tabular data.

Like in a csv each record is given on a new line but in a tsv tabs rather than commas are used
to separate values with each record. This can also be seen by opening a tsv file in a text editor
such as notepad.

library(readr)
read_file(file = "images/102-workflows-naming-files/example.tsv")

[1] "Name\tNumber\r\nA\t1\r\nB\t2\r\nC\t3"
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Name Number
A 1
B 2
C 3

One thing to note is that tabs are a separate character and are not just multiple spaces. In
plain text these can be impossible to tell apart, so most text editors have an option to display
tabs differently from repeated spaces, though this is usually not enabled by default.

2.3.2.3 Inside an Excel file

When you open an excel file in a text editor, you will immediately see that this is not a human
interpretable file format.

504b 0304 1400 0600 0800 0000 2100 62ee
9d68 5e01 0000 9004 0000 1300 0802 5b43
6f6e 7465 6e74 5f54 7970 6573 5d2e 786d
6c20 a204 0228 a000 0200 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
.... .... .... .... .... .... .... ....
0000 0000 0000 0000 ac92 4d4f c330 0c86
ef48 fc87 c8f7 d5dd 9010 424b 7741 48bb
2154 7e80 49dc 0fb5 8da3 241b ddbf 271c
1054 1a83 0347 7fbd 7efc cadb dd3c 8dea
.... .... .... .... .... .... .... ....

Each entry here is a four digit hexadecimal number and there are a lot more of them than we
have entries in our small table.

This is because excel files can carry a lot of additional information that a csv or tsv are not
able to, such as cell formatting or having multiple tables stored within a single file (called
sheets by excel).

This means that excel files take up much more memory because they are carrying a lot more
information than is strictly contained within the data itself.

2.3.2.4 Inside a JSON file

JSON, or Java Script Object Notation, files are an open source format for list-like data. Each
record is represented by a collection of key:value pairs. In our example table each entry has
two fields, one corresponding to the Name key and one corresponding to the Number key.
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[{
"Name": "A",
"Number": "1"

}, {
"Name": "B",
"Number": "2"

}, {
"Name": "C",
"Number": "3"

}]

This list-like structure allows non-tabular data to be stored by using a property called nesting:
the value taken by a key can be a single value, a vector of values or another list-like object.

This ability to create nested data structures has lead to this data format being used widely in
a range of applications that require data transfer.

2.3.2.5 Inside an XML file

XML files are another open source format for list-like data, where each record is represented
by a collection of key:value pairs.

<?xml version="1.0" encoding="UTF-8"?>
<root>
<row>

<Name>A</Name>
<Number>1</Number>

</row>
<row>

<Name>B</Name>
<Number>2</Number>

</row>
<row>

<Name>C</Name>
<Number>3</Number>

</row>
</root>

The difference from a JSON file is mainly in how those records are formatted within the file.
In a JSON file this is designed to look like objects in the Java Script programming language
and in XML the formatting is done to look like HTML, the markup language used to write
websites.
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2.3.3 A Note on Notebooks

• There are two and a half notebook formats that you are likely to use: .rmd, .ipynb or
alternatively .qmd.

• R markdown documents .rmd are plain text files, so are very human friendly.

• JuPyteR notebooks have multi-language support but are not so human friendly (JSON
in disguise).

• Quarto documents offer the best of both worlds and more extensive language support.
Not yet as established as a format.

In addition to the files you read and write, the files that you code in will largely determine
your workflow.

There are three main options for the way that you code. You might typing your code directly
at the command line, you might using a text editor or IDE to write scripts or you might use
a notebook file that mixes code, text and output together in a single document.

We’ll compare these methods of working soon, but first let’s do a quick review of what note-
books are available to you and why you might want to use them.

As a data scientist, there are two and a half notebook formats that you’re likely to have
met before. The first two are Rmarkdown files for those working predominantly in R and
interactive Python or JuPyteR notebooks for those working predominantly in Python. The
final half format are quarto markdown documents, which are relatively new and extend the
functionality of Rmarkdown files to provide multi-language support.

The main benefit of Rmarkdown documents is that they’re plain text files, so they’re very
human friendly and work very well with version control software like git. JuPyteR notebooks
have the benefit of supporting code written in Julia, Python or R, but are not so human
friendly - under the hood these documents are JSON files that should not be edited directly
(because a misplaced bracket will break them!).

Quarto documents offer the best of both worlds, with plain text formatting and even more ex-
tensive language support than jupyter notebooks. Quarto is a recent extension of Rmarkdown,
which is rapidly becoming popular in the data science community. Quarto also allows you to
create a wider range of documents, including websites, these course notes and the associated
slides.

Each format has its benefits and drawbacks depending on the context in which they are
used and all have some shared benefits and limitations by nature of them all being notebook
documents.

2.3.4 File Extensions and Where You Code
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Property Notebook Script Command Line
reproducible ~ � X
readable ~ � ~
self-documenting � X X
in production X � ~
ordering / automation ~ � ~

The main benefit of notebook documents is that they are self-documenting: they can mix the
documentation, code and report all into a single document. Notebooks also provide a level of
interactivity when coding that is not possible when working directly at the command line or
using a text editor to write scripts. This limitation is easily overcome by using an integrated
development environment when scripting, rather than a plain text editor.

Writing code in .r files is not self-documenting but this separation of code, documentation
and outputs has many other benefits. Firstly, the resulting scripts provide a reproducible and
automatable workflow, unlike one-off lines of code being run at the command line. Secondly,
using an IDE to write these provides you with syntax highlighting and code linting features to
help you write readable and accurate code. Finally, the separation of code from documentation
and output allows your work to be more easily or even directly put into production.

In this course we will generally advocate for a scripting-first approach to data science, though
notebooks and command line work definitely have their place.

Notebooks are great as a teaching tool, for small reports and for rapid prototyping but they
have strong limitations with being put into production. Conversely, coding directly at the
command line is perfect for simple one-time tasks but it leaves no trace of your workflow and
leads to an analysis that cannot be easily replicated in the future.

2.3.5 Summary

Finally, let’s wrap things up by summarising what we have learned about naming files.

Before the dot we want to pick file names that machine readable, human friendly and play
nicely with the default orderings provided to us.

Name files so that they are:

• Machine Readable,
• Human Readable,
• Order Friendly.

After the dot, we want to pick file types that are widely accessible, easily read by humans and
allow for our entire analysis to be reproduced.
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Use document types that are:

• Widely accessible,
• Easy to read and reproduce,
• Appropriate for the task at hand.

Above all we want to name our files and pick our file types to best match with the team we
are working in and the task that is at hand.

2.4 Session Information

pander::pander(sessionInfo())

R version 4.3.1 (2023-06-16)

Platform: x86_64-apple-darwin20 (64-bit)

locale: en_US.UTF-8||en_US.UTF-8||en_US.UTF-8||C||en_US.UTF-8||en_US.UTF-8

attached base packages: stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: readr(v.2.1.4)

loaded via a namespace (and not attached): vctrs(v.0.6.5), cli(v.3.6.2), knitr(v.1.45),
rlang(v.1.1.2), xfun(v.0.41), png(v.0.1-8), jsonlite(v.1.8.8), glue(v.1.6.2), htmltools(v.0.5.7),
hms(v.1.1.3), fansi(v.1.0.6), rmarkdown(v.2.25), pander(v.0.6.5), evaluate(v.0.23), tib-
ble(v.3.2.1), tzdb(v.0.4.0), fastmap(v.1.1.1), yaml(v.2.3.8), lifecycle(v.1.0.4), compiler(v.4.3.1),
Rcpp(v.1.0.11), pkgconfig(v.2.0.3), rstudioapi(v.0.15.0), digest(v.0.6.33), R6(v.2.5.1),
utf8(v.1.2.4), pillar(v.1.9.0), magrittr(v.2.0.3) and tools(v.4.3.1)
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3 Code

3.1 Introduction

We have already described how we might organise an effective data science project at the
directory and file level. In this chapter we will delve one step deeper and consider how we can
structure our work within those files.

In particular, we’ll focus on code files here. We’ll start by comparing the two main approaches
to structuring our code, called functional programming and object oriented programming.
We’ll then consider conventions on how we should order code within our scripts and how we
name the functions and objects we create.

To round up this chapter, we’ll summarise the main points from the R style guide that we will
be following in this course and highlight some useful packages for writing effective code.

3.2 Functional Programming

A functional programming style has two major properties:

• Object immutability,

• Complex programs are written using function composition.

The first point states that the original data or objects should never be modified or altered
by the code that we write. We’ve met this idea before when making new, cleaner versions of
our raw data while taking care to leave the original messy data intact. Object immutability
extends this same idea to cover our code as well as our data.

The second point encapsulates that in functional programming complex problems are solved
by decomposing them into a series of smaller problems. A separate, self-contained function is
then written to solve each sub-problem. This means that each individual function is simple
and easy to understand. This makes each of these small functions easy to test and to reuse
in many places thoughout our analysis. Code complexity is then built up by composing these
functions in various ways.
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It can be difficult to get into this way of thinking, but people with mathematical training often
find it quite natural. This is because mathematicians have many years experience of working
with function compositions in the abstract, mathematical sense.

𝑦 = 𝑔(𝑥) = 𝑓3 ∘ 𝑓2 ∘ 𝑓1(𝑥).

3.2.1 The Pipe Operator

One issue with functional programming is that lots of nested functions means that there are
also lots of nested brackets. These start to get tricky to keep track of when you have upwards
of 3 functions being composed.

log(exp(cos(sin(pi))))

[1] 1

This reading difficulty is only exacerbated if your functions have additional arguments on top
of the original inputs.

The pipe operator %>% from the {magrittr} package helps with this issue. It works exactly
like function composition: it takes the whatever is on the left (whether that is an existing
object or the output of a function) and passes it to the following function call as the first
argument of that function.

library(magrittr)
pi %>%
sin() %>%
cos() %>%
exp() %>%
log()

[1] 1

iris %>%
head(n = 3)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
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The pipe operator is often referred to as “syntactic sugar”. This is because it doesn’t add
anything to your code in itself, but rather it makes your code so much more palatable to
read.

In R versions 4.1 and greater, there’s a built-in version of this pipe operator,|>. This is written
using the vertical bar symbol followed by a greater than sign. You can usually find this vertical
bar above backslash on the keyboard. (Just to cause confusion, the vertical bar symbol is also
called the pipe symbol and performs a similar operation in other programming langauges.)

library(magrittr)
pi |>
sin() |>
cos() |>
exp() |>
log()

[1] 1

iris |>
head(n = 3)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa

The base R pipe usually behaves in the same way as the pipe from magrittr, but there are a
few cases where they differ. For reasons of back-compatibility and consistency we’ll stick to
the {magrittr} pipe in this course. (For an outline of some of the differences between these
two pipes, check out this blog post by Isabella Velasquez)

3.2.2 When not to pipe

Pipes are designed to put focus on the the actions you are performing rather than the object
that you are preforming those operations on. This means that there are two cases where you
should almost certainly not use a pipe.

The first of these is when you need to manipulate more than one object at a time. Using
secondary objects as reference points (but leaving them unchanged) is of course perfectly fine,
but pipes should be used when applying a sequence of steps to create a new, modified version
of one primary object.
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Secondly, just because you can chain together many actions into a single pipeline that doesn’t
mean you necessarily should do so. Very long sequences of piped operations are easier to
read than nested functions but they still burden the reader with the same cognitive load on
their short-term memory. Be kind to them and create meaningful intermediate objects with
informative names. This will help the reader to more easily understand the logic within your
code.

3.3 Object Oriented Programming

The main alternative to functional programming is object oriented programming.

TL;DR

• OOP solves complex problems by using lots of simple objects
• R has 3 OOP systems: S3, S4 and R6.
• Objects belong to a class, have methods and fields.
• Example: agent based simulation of beehive.

3.3.1 OOP Philosophy

In functional programming, we solve complicated problems by using lots of simple functions.
In object oriented programming we solve complicated problems using lots of simple objects.
Which of these programming approaches is best will depend on the particular type of problem
that you are trying to solve.

Functional programming is excellent for most types of data science work. Object oriented
comes into its own when your problem has many small components interacting with one
another. This makes it great for things like designing agent-based simulations, which I’ll come
back to in a moment.

In R there are three different systems for doing object oriented programming (called S3, S4,
and R6), so things can get a bit complicated. We won’t go into detail about them here, but
I’ll give you an overview of the main ideas.

This approach to programming might be useful for you in the future, for example if you want
to extend base R functions to work with new types of input, and to have user-friendly displays.
In that case Advanced R by Hadley Wickham is an excellent reference text.

In OOP, each object belongs to a class and has a set of methods associated with it. The class
defines what an object is and methods describe what that object can do. On top of that, each
object has class-specific attributes or data fields. These fields are shared by all objects in a
class but the values that they take give information about that specific object.
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3.3.2 OOP Example

This is is all sounding very abstract. Let’s consider writing some object oriented code to
simulate a beehive. Each object will be a bee, and each bee is an instance of one of three
bee classes: it might be a queen, a worker or a drone. Different bee classes have different
methods associated with them, which describe what the bee can do, for example all bees
would have 6 methods that let them move up, down, left, right, forward and backward
within the hive. An additional reproduce method might only be defined for queen bees and
a pollinate method might only be defined for workers. Each instance of a bee has then has
its own fields, which give data about that specific bee. All bees have x, y and z coordinate
fields that give the bee’s current location within the hive. These fields can then be altered by
using the movement methods defined above. The queen class might have an additional field,
counting its number of offspring and the workers might have an additional field for how much
pollen they are carrying.

As the simulation progresses, methods are applied to each object altering their fields and
potentially creating or destroying objects. This is very different from the preservation mindset
of functional programming, but hopefully you can see that it is a very natural approach to
many types of problem.

3.4 Structuring R Script Headers

TL;DR

• Start script with a comment of 1-2 sentences explaining what it > does.
• setwd() and rm(ls()) are the devil’s work.
• “Session” > “Restart R” or Keyboard shortcut: crtl/cmd + shift > + 0
• Polite to gather all library() and source() calls.
• Rude to mess with other people’s set up using install.packages().
• Portable scripts use paths relative to the root directory of the project.

First things first, let’s discuss what should be at the top of your R scripts.

It is almost always a good idea to start your file with a few commented out sentences describing
the purpose of the script and, if you work in a large team, perhaps who contact with any
questions about this script. (There is more on comments coming up soon, don’t worry!)

It is also good practise to move all library() and source() calls to the top of your script.
These indicate the packages and helper function that are dependencies of your script; it’s
useful to know what you need to have installed before trying to run any code.

That segues nicely to the next point, which is never to hard code package installations. It is
extremely bad practise and very rude to do so because then your script might alter another
person’s R installation. If you don’t know already, this is precisely the difference between
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an install.packages() and library() call: install.packages() will download the code
for that package to the users computer, while library() takes that downloaded code and
makes it available in the current R session. To avoid messing with anyone’s R installation, you
should always type install.package() commands directly in the console and then place the
corresponding library() calls within your scripts.

Next, it is likely that you, or someone close to you, will commit the felony of starting every
script by setting the working directory and clearing R’s global environment. This is very bad
practice, it’s indicative of a workflow that’s not project based and it’s problematic for at least
two reasons. Firstly, the path you set will likely not work on anyone else’s computer. Secondly,
clearing the environment like this may look like it gets you back to fresh, new R session but
all of your previously loaded packages will still be loaded and lurking in the background.

Instead, to achieve your original aim of starting a new R session, go to the menu and select the
“Session” drop down then select “Restart R”. Alternatively, you can use keyboard shortcuts to
do the same. This is “crtl + shift + 0” on Windows and “cmd + shift + 0” on a mac. The
fact that a keyboard shortcut exists for this should quite strongly hint that, in a reproducible
and project oriented workflow, you should be restarting R quite often in an average working
day. This is the scripting equivalent of “clear all output and rerun all” in a notebook.

Finally, let’s circle back to the point I made earlier about setting the working directory. This
is fragile because you are likely giving file paths that are specific to your computer, your
operating system and your file organisation system. The chances of someone else having all of
these the same are practically zero.

3.5 Portable File paths with {here}

# Bad - breaks if project moved
source("zaks-mbp/Desktop/exciting-new-project/src/helper_functions/rolling_mean.R")

# Better - breaks if Windows (older)
source("../../src/helper_functions/rolling_mean.R")

# Best - but use here:here() to check root directory correctly identified
source(here::here("src","helper_functions","rolling_mean.R"))

# For more info on the {here} package:
vignette("here")

To fix the problem of person- and computer-specific file paths you can have two options.
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The first is to use relative file paths. In this you assume that each R script is being run in its
current location and my moving up and down through the levels of your project directory you
point to the file that you need.

This is good in that it solves the problem of paths breaking because you move the project to a
different location on your own laptop. However, it does not fully solve the portability problem
because you might move your file to a different location within the same project. It also does
not solve the problem that windows uses MacOS and linux use forward slashes in file paths
with widows uses backslashes.

To resolve these final two issues I recommend using the here() function from the {here}
package. This package looks for a .Rproj or .git file to identify the root directory of your
project. It then creates file paths relative to the root of your project that are suitable for the
operating system on which the code is being run. It really is quite marvellous.

For more information on how to use the here package, explore its chapter in R - What They
Forgot, R for Data Science or this project oriented workflow blog post.

3.6 Code Body

We will moving on now from the head of the code to the body.

Having well named and organised code will do most of the work of helping people to read and
understand your code. Comments and sectioning do the rest of the work.

Note, this section is designed as an introduction to the tidyverse style guide and not as a
replacement to it.

3.6.1 Comments

Comments may be either short in-line comments at the end of a line or full lines dedicated to
comments. To create either type of comment in R, simply type hash followed by one space.
The rest of that line will not be evaluated and will function as a comment. If multi-line
comments are needed simply start multiple lines with a hash and a space.

Comments can also be used to add structure to your code, buy using commented lines of
hyphens and equal signs to chunk your files into minor and major sections.

Markdown-like section titles can be added to these section and subsection headers. Many
IDEs, such as RStudio, will interpret these as a table of contents for you, so that you can more
easily navigate your code.
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# This is an example script showing good use of comments and sectioning

library(here)
source(here("src","helper_functions","rolling_mean.R"))

#===============================================================================
# Major Section on Comments ----
#===============================================================================

#-------------------------------------------------------------------------------
## Minor Section on inline comments ----
#-------------------------------------------------------------------------------
x <- 1:10 # this is an inline comment

#-------------------------------------------------------------------------------
## Minor Section on full line comments ----
#-------------------------------------------------------------------------------
rolling_mean(x)
# This is an full line comment
# Use 80 characters max for readability

3.6.2 Objects are Nouns

• Object names should use only lowercase letters, numbers, and _.

• Use underscores (_) to separate words within a name. (snake_case)

• Use nouns, preferring singular over plural names.

# Good
day_one
day_1

# Bad
first_day_of_the_month
DayOne
dayone
djm1

When creating and naming objects a strong guideline in that objects should be named using
short but meaningful nouns. Names should not include any special characters and should use
underscores to separate words within the object name.
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This is similar to our file naming guide, but note that hyphens can’t be used in object names
because this conflicts with the subtraction operator.

When naming objects, as far as possible use singular nouns. The main reason for this is that
the plurisation rules in English are complex and will eventually trip up either you or a user of
your code.

3.6.3 Functions are Verbs

• Function names should use only lower-case letters, numbers, and _.

• Use underscores (_) to separate words within a name. (snake_case)

• Suggest imperative mood, as in a recipe.

• Break long functions over multiple lines, using 4 rather than the usual 2 spaces for indent.

# Good
add_row()
permute()

# Bad
row_adder()
permutation()

long_function_name <- function(
a = "a long argument",
b = "another argument",
c = "another long argument") {

# As usual code is indented by two spaces.
}

The guidelines for naming functions are broadly similar, with the advice that functions should
be verbs rather than nouns.

Functions should be named in the imperative mood, like in a recipe. This is again for consis-
tency; having function names in a range of moods and tenses leads to coding nightmares.

As with object names you should aim to give your functions and their arguments short, evoca-
tive names. For functions with many arguments or a long name, you might not be able to fit
the function definition on a single line. In this case you can should place each argument on
its own double indented line and the function body on a single indented line.
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3.6.4 Casing Consistantly

As we have mentioned already, we have many options for separating words within names:

• CamelCase
• pascalCase
• snakecase
• underscore_separated � 
• hyphen-separated
• point.separated �

For people used to working in Python it is tempting to use point separation in function names,
in the spirit of methods from object oriented programming. Indeed, some base R functions
even use this convention.

However, the reason that we advise against it is because it is already used for methods in some
of R’s inbuilt OOP functionality. We will use underscore separation in our work.

3.6.5 Style Guide Summary

1. Use comments to structure your code
2. Objects = Nouns
3. Functions = Verbs
4. Use snake case and consistant grammar

3.7 Further Tips for Friendly Coding

In addition to naming conventions the style guide gives lots of other guidance on writing code
in a way that is kind to future readers of that code.

I’m not going to go repeat all of that guidance here, but the motivation for all of these can be
boiled down into the following points.

• Write your code to be easily understood by humans.

• Use informative names, typing is cheap.

# Bad
for (i in dmt) {
print(i)

}

# Good
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for (temperature in daily_max_temperature) {
print(temperature)

}

• Divide your work into logical stages, human memory is expensive.

When writing your code, keep that future reader in mind. This means using names that are
informative and reasonably short, it also means adding white space, comments and formatting
to aid comprehension. Adding this sort of structure to your code also helps to reduce the
cognitive burden that you are placing on the human reading your code.

Informative names are more important than short names. This is particularly true when using
flow controls, which are things like for loops and while loops. Which of these for loops would
you like to encounter when approaching a deadline or urgently fixing a bug? Almost surely
the second one, where context is immediately clear.

A computer doesn’t care if you call a variable by only a single letter, by a random key smash
(like aksnbioawb) or by an informative name. A computer also doesn’t care if you include
no white space your code - the script will still run. However, doing these things are friendly
practices that can help yourself when debugging and your co-workers when collaborating.

3.8 Reduce, Reuse, Recycle

In this final section, we’ll look at how you can make your workflow more efficient by reducing
the amount of code you write, as well as reusing and recycling code that you’ve already
written.

3.8.1 DRY Coding

This idea of making your workflow more efficient by reducing, reusing and recycling your code
is summarised by the DRY acronym: don’t repeat yourself.

This can be boiled down to three main points:

• if you do something twice in a single script, then write a function to do that
thing;

• if you want to use your function elsewhere within your project, then save it in
a separate script;

• If you want to use your function across projects, then add it to a package.
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Of course, like with scoping projects in the first place, this requires some level of clairvoyance:
you have to be able to look into the future and see whether you’ll use a function in another
script or project. This is difficult, bordering on impossible. So in practice, this is done
retrospectively - you find a second script or project that needs a function then pull it out its
own separate file or include it in a package.

As a rule of thumb, if you are having to consider whether or not to make the function more
widely available then you should do it. It takes much less effort to do this work now, while
it’s fresh in your mind, than to have to re-familiarise yourself with the code in several years
time.

Let’s now look at how to implement those sub-bullet points: “when you write a function,
document it” and “when you write a function, test it”.

3.8.2 Rememer how to use your own code

When you come to use a function written by somebody else, you likely have to refer to their
documentation to teach or to remind yourself of things like what the expected inputs are and
how exactly the method is implemented.

When writing your own functions you should create documentation that fills the same need.
Even if the function is just for personal use, over time you’ll forget exactly how it works.

When you write a function, document it.

But what should that documentation contain?

• Inputs
• Outputs
• Example use cases
• Author (if not obvious or working in a team)

Your documentation should describe the inputs and outputs of your function, some simple
example uses. If you are working in a large team, the documentation should also indicate who
wrote the function and who’s responsible for maintaining it over time.

3.8.3 {roxygen2} for documentation

In the same way that we used the {here} package to simplify our file path problems, we’ll use
the {roxygen2} package to simplify our testing workflow.

The {roxygen2} package gives us an easily insert-able temple for documenting our functions.
This means we don’t have to waste our time and energy typing out and remembering boil-
erplate code. It also puts our documentation in a format that allows us to get hints and
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auto-completion for our own functions, just like the functions we use from packages that are
written by other people.

To use Roxygen, you only need to install it once - it doesn’t need to be loaded with a library
call at the top of your script. After you’ve done this, and with your cursor inside a function
definition, you can then insert skeleton code to document that function in one of two ways:
you can either use the Rstudio menu or the keyboard short cut for your operating system.

1. install.packages("roxygen2")
2. With cursor inside function: Code > Insert Roxygen Skeleton
3. Keyboard shortcut: cmd + option + shift + r or crtl + option + shift + r
4. Fill out relevant fields

3.8.4 An {roxygen2} example

Below, we’ve got an example of an Roxygen skeleton to document a function that calculates
the geometric mean of a vector. Here, the hash followed by an apostrophe is a special type
of comment. It indicates that this is function documentation rather than just a regular com-
ment.

#' Title
#'
#' @param x
#' @param remove_NA
#'
#' @return
#' @export
#'
#' @examples
geometric_mean <- function(x, remove_NA = FALSE){
# Function body goes here

}

We’ll fill in all of the fields in this skeleton apart from export, which we’ll remove. If we put
this function in a R package, then the export field makes it available to users of that package.
Since this is just a standalone function we won’t need the export field, though keeping it
wouldn’t actually cause us any problems either.

#' Calculate the geometric mean of a numeric vector
#'
#' @param x numeric vector
#' @param remove_NA logical scalar, indicating whether NA values should be stripped before computation proceeds.
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#'
#' @return the geometric mean of the values in `x`, a numeric scalar value.
#'
#' @examples
#' geometric_mean(x = 1:10)
#' geometric_mean(x = c(1:10, NA), remove_NA = TRUE)
#'
geometric_mean <- function(x, remove_NA = FALSE){
# Function body goes here

}

Once we have filled in the skeleton documentation it might look something like this. We have
described what the function does, what the expected inputs are and what the user can expect
as an output. We’ve also given an few simple examples of how the function can be used.

For more on Roxygen, see the package documentation or the chapter of R packages on function
documentation.

3.8.5 Checking Your Code

If you write a function, test it.

Testing code has two main purposes:

• To warn or prevent user misuse (e.g. strange inputs),
• To catch edge cases.

On top of explaining how our functions should work, we really ought to check that they do
work. This is the job of unit testing.

Whenever you write a function you should test that it works as you intended it to. Additionally,
you should test that your function is robust to being misused by the user. Depending on
the context, this might be accidental or malicious misuse. Finally, you should check that the
function behaves properly for strange, but still valid, inputs. These are known as edge cases.

Testing can be a bit of a brutal process, you’ve just created a beautiful function and now
you’re job is to do your best to break it!

3.8.6 An Informal Testing Workflow

1. Write a function
2. Experiment with the function in the console, try to break it
3. Fix the break and repeat.
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Problems: Time consuming and not reproducible.

An informal approach to testing your code might be to first write a function and then play
around with it in the console to check that it behaves well when you give it obvious inputs,
edge cases and deliberately wrong inputs. Each time you manage to break the function, you
edit it to fix the problem and then start the process all over again.

This is testing the code, but only informally. There’s no record of how you have tried to break
your code already. The problem with this approach is that when you return to this code to
add a new feature, you’ll probably have forgotten at least one of the informal tests you ran
the first time around. This goes against our efforts towards reproducibility and automation.
It also makes it very easy to break code that used to work just fine.

3.8.7 A Formal Testing Workflow

We can formalise this testing workflow by writing our tests in their own R script and saving
them for future reference. Remember from the first lecture that these should be saved in the
tests/ directory, the structure of which should mirror that of the src/ directory for your
project. All of the tests for one function should live in a single file, which is named after that
function.

One way of writing these tests is to use lots of if statements. The {testthat} can do some of
that syntactic heavy lifting for us. It has lots of helpful functions to test that the output of
your function is what you expect.

geometric_mean <- function(x , remove_NA = FALSE){prod(x)^(1/length(x))}

testthat::expect_equal(
object = geometric_mean(x = c(1, NA), remove_NA = FALSE),
expected = NA)

# Error: geometric_mean(x = c(1, NA), remove_NA = FALSE) not equal to NA.
# Types not compatible: double is not logical

In this example, we have an error because our function returns a logical NA rather than a
double NA. Yes, R really does have different types of NA for different types of missing data, it
usually just handles these nicely in the background for you.

This subtle difference is probably not something that you would have spotted on your own,
until it caused you trouble much further down the line. This rigorous approach is one of the
benefits of of using the {testthat} functions.

To fix this test we change out expected output to NA_real_.
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testthat::expect_equal(
object = geometric_mean(x = c(1,NA), remove_NA = FALSE),
expected = NA_real_)

We’ll revisit the {testthat} package in the live session this week, when we will learn how to
use it to test functions within our own packages.

3.9 Summary

• Functional and Object Oriented Programming
• Structuring your scripts
• Styling your code
• Reduce, reuse, recycle
• Documenting and testing

Let’s wrap up by summarising what we have learned in this chapter.

We started out with a discussion on the differences between functional and object oriented
programming. While R is capable of both, data science work tends to have more of a functional
flavour to it.

We’ve then described how to structure your scripts and style your code to make it as human-
friendly and easy to debug as possible.

Finally, we discussed how to write DRY code that is well documented and tested.

3.10 Session Information

pander::pander(sessionInfo())

R version 4.3.1 (2023-06-16)

Platform: x86_64-apple-darwin20 (64-bit)

locale: en_US.UTF-8||en_US.UTF-8||en_US.UTF-8||C||en_US.UTF-8||en_US.UTF-8

attached base packages: stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: magrittr(v.2.0.3)

loaded via a namespace (and not attached): crayon(v.1.5.2), vctrs(v.0.6.5), cli(v.3.6.2),
knitr(v.1.45), rlang(v.1.1.2), xfun(v.0.41), stringi(v.1.8.3), purrr(v.1.0.2), pkgload(v.1.3.3),
generics(v.0.1.3), assertthat(v.0.2.1), jsonlite(v.1.8.8), glue(v.1.6.2), rprojroot(v.2.0.4),
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htmltools(v.0.5.7), brio(v.1.1.4), rmarkdown(v.2.25), pander(v.0.6.5), emo(v.0.0.0.9000),
evaluate(v.0.23), fastmap(v.1.1.1), yaml(v.2.3.8), lifecycle(v.1.0.4), stringr(v.1.5.1), com-
piler(v.4.3.1), Rcpp(v.1.0.11), testthat(v.3.2.1), timechange(v.0.2.0), rstudioapi(v.0.15.0),
digest(v.0.6.33), R6(v.2.5.1), tools(v.4.3.1), lubridate(v.1.9.3) and desc(v.1.4.3)
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Workflows Checklist

Videos / Chapters

□ Organising your work (30 min) [slides]
□ Naming Files (20 min) [slides]
□ Organising your code (27 min) [slides]

Reading

Use the workflows section of the reading list to support and guide your exploration of this
week’s materials. Note that these texts are divided into core reading, reference materials and
materials of interest.

Tasks

Short:

• When downloading papers from a journal webpage or ArXiV, they often have unhelpful
file names like 2310.12711.pdf. Come up with your own naming convention that will
keep your downloaded papers organised and easy to search. Write a short paragraph
explaining and justifying your naming convention for someone else.

• When downloading data from websites you can encounter similary uninformative names.
Use the US Geological Survey website to download a csv file of all earthqakes in the
conterminous US exceeding magnitude 3.0 during 2023. Note the default name of this
file and suggest your own, improved name for this file.

• Consider simulating a fire evacuation of the Huxley building taking an object oriented
approach. List the classes of object might you define and what methods and fields would
give to each of these. (There is no expectation to code this simulation)

Core:
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• Find 3 data science projects on Github and explore how they organise their work. Write
a post on the EdStem forum that links to all three, and in a couple of paragraphs describe
the content and structure of one project.

• Create your own project directory (or directories) for this course and its assignments.

• Write two of your own R functions. The first should calculate the geometric mean of a
numeric vector. The second should calculate the rolling arithmetic mean of a numeric
vector.

Bonus:

• Re-factor an old project to match the project organisation and coding guides for this
course. This might be a small research project, class notes or a collection of homework
assignments. Use an R-based project if possible. If you only have python projects, then
either translate these to R or apply the PEP8 style guide. Take care to select a suitably
sized project so that this is a meaningful exercise but does not take more than a few
hours.

• If you are able to do so, host your re-factored project publicly and share it with the rest
of the class on the EdStem Discussion forum.

Live Session

In the live session we will begin with a discussion of this week’s tasks. We will then create a
minimal R package to organise and test the functions you have written.

• Please come to the live session prepared to discuss the following points:

– Did you make the assignment projects as subdirectories or as their stand alone
projects? Why?

– What were some terms that you had not met before during the readings? How did
you find their meanings?

– What did you have to consider when writing your rolling mean function?

• If you would like to follow along in the live session then you should prepare by:

– Installling/Updating R, RStudio and Quarto.

– Follow the Happy git with R instructions to link RStudio and Git and Github
(§1-14).

– Write a username/README.md introducing yourself on your GitHub profile. (See
e.g.: StatsRhian, nrennie)
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Part II

Acquiring and Sharing Data
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Introduction

Note

Effective Data Science is still a work-in-progress. This chapter is largely complete and
just needs final proof reading.
If you would like to contribute to the development of EDS, you may do so at https:
//github.com/zakvarty/data_science_notes.

Data can be difficult to acquire and gnarly when you get it.

The raw material that you work with as a data scientist is, unsurprisingly, data. In this part
of the course we will focus on the different ways in which data can be stored, distributed and
obtained.

Being able to obtain and read a dataset is often a surprisingly large hurdle in getting a new
data science project off the ground. The skill of being able to source and read data from
many locations is usually sanitised during a statistics programme: you’re given a ready-to-go,
cleaned CSV file and all focus is placed on modelling. This week aims to remedy that by
equipping you with the skills to acquire and manage your own data.

We will begin this week by explore different file types. This dictates what type of information
you can store, who can access that information and how they read that it into R. We will then
turn our attention to the case when data are not given to you directly. We will learn how
to obtain data from a raw webpage and how to request data that via a service known as an
API.
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4 Tabular Data

Important

Effective Data Science is still a work-in-progress. This chapter is undergoing heavy re-
structuring and may be confusing or incomplete.
If you would like to contribute to the development of EDS, you may do so at https:
//github.com/zakvarty/data_science_notes.

4.1 Loading Tabular Data

Recall that simpler, open source formats improve accessibility and reproducibility. We will
begin by reading in three open data formats for tabular data.

• random-data.csv

• random-data.tsv

• random-data.txt

Each of these data sets contains 26 observations of 4 variables:

• id, a Roman letter identifier;
• gaussian, standard normal random variates;
• gamma, gamma(1,1) random variates;
• uniform, uniform(0,1) random variates.

4.1.1 Base R

random_df <- read.csv(file = 'random-data.csv')
print(random_df)
#> id gaussian gamma uniform
#> 1 a -1.20706575 0.98899970 0.22484576
#> 2 b 0.27742924 0.03813386 0.08498474
#> 3 c 1.08444118 1.09462335 0.63729826
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#> 4 d -2.34569770 1.49301101 0.43101637
#> 5 e 0.42912469 5.40361248 0.07271609
#> 6 f 0.50605589 1.72386539 0.80240202
#> 7 g -0.57473996 1.95357133 0.32527830
#> 8 h -0.54663186 0.07807803 0.75728904
#> 9 i -0.56445200 0.21198194 0.58427152
#> 10 j -0.89003783 0.20803673 0.70883941
#> 11 k -0.47719270 2.08607862 0.42697577
#> 12 l -0.99838644 0.49463708 0.34357270
#> 13 m -0.77625389 0.77171305 0.75911999
#> 14 n 0.06445882 0.37216648 0.42403021
#> 15 o 0.95949406 1.88207991 0.56088725
#> 16 p -0.11028549 0.76622568 0.11613577
#> 17 q -0.51100951 0.50488585 0.30302180
#> 18 r -0.91119542 0.22979791 0.47880269
#> 19 s -0.83717168 0.75637275 0.34483055
#> 20 t 2.41583518 0.62435969 0.60071414
#> 21 u 0.13408822 0.64638373 0.07608332
#> 22 v -0.49068590 0.11247545 0.95599261
#> 23 w -0.44054787 0.11924307 0.02220682
#> 24 x 0.45958944 4.91805535 0.84171063
#> 25 y -0.69372025 0.60282666 0.63244245
#> 26 z -1.44820491 0.64446571 0.31009417

Output is a data.frame object. (List of vectors with some nice methods)

4.1.2 {readr}

random_tbl <- readr::read_csv(file = 'random-data.csv')
#> Rows: 26 Columns: 4
#> -- Column specification -----------------------------------------------------
#> Delimiter: ","
#> chr (1): id
#> dbl (3): gaussian, gamma, uniform
#>
#> i Use `spec()` to retrieve the full column specification for this data.
#> i Specify the column types or set `show_col_types = FALSE` to quiet this message.
print(random_tbl)
#> # A tibble: 26 x 4
#> id gaussian gamma uniform
#> <chr> <dbl> <dbl> <dbl>
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#> 1 a -1.21 0.989 0.225
#> 2 b 0.277 0.0381 0.0850
#> 3 c 1.08 1.09 0.637
#> 4 d -2.35 1.49 0.431
#> 5 e 0.429 5.40 0.0727
#> 6 f 0.506 1.72 0.802
#> # i 20 more rows

Output is a tibble object. (List of vectors with some nicer methods)

4.1.2.1 Benefits of readr::read_csv()

1. Increased speed (approx. 10x) and progress bar.

2. Strings are not coerced to factors. No more stringsAsFactors = FALSE

3. No row names and nice column names.

4. Reproducibility bonus: does not depend on operating system.

4.1.3 WTF: Tibbles

4.1.3.1 Printing

• Default to first 10 rows and as many columns as will comfortably fit on your screen.

• Can adjust this behaviour in the print call:

# print first three rows and all columns
print(random_tbl, n = 3, width = Inf)
#> # A tibble: 26 x 4
#> id gaussian gamma uniform
#> <chr> <dbl> <dbl> <dbl>
#> 1 a -1.21 0.989 0.225
#> 2 b 0.277 0.0381 0.0850
#> 3 c 1.08 1.09 0.637
#> # i 23 more rows

Bonus: Colour formatting in IDE and each column tells you it’s type.
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4.1.3.2 Subsetting

Subsetting tibbles will always return another tibble.

# Row Subsetting
random_tbl[1, ] # returns tibble
random_df[1, ] # returns data.frame

# Column Subsetting
random_tbl[ , 1] # returns tibble
random_df[ , 1] # returns vector

# Combined Subsetting
random_tbl[1, 1] # returns 1x1 tibble
random_df[1, 1] # returns single value

This helps to avoids edge cases associated with working on data frames.

4.1.4 Other {readr} functions

See {readr} documentation, there are lots of useful additional arguments that can help you
when reading messy data.

Functions for reading and writing other types of tabular data work analogously.

4.1.4.1 Reading Tabular Data

library(readr)
read_tsv("random-data.tsv")
read_delim("random-data.txt", delim = " ")

4.1.4.2 Writing Tabular Data

write_csv(random_tbl, "random-data-2.csv")
write_tsv(random_tbl, "random-data-2.tsv")
write_delim(random_tbl, "random-data-2.tsv", delim = " ")
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4.1.5 Need for Speed

Some times you have to load lots of large data sets, in which case a 10x speed-up might not
be sufficient.

If each data set still fits inside RAM, then check out data.table::fread() which is optimised
for speed. (Alternatives exist for optimal memory usage and data too large for working memory,
but not covered here.)

Note: While it can be much faster, the resulting data.table object lacks the consistancy
properties of a tibble so be sure to check for edge cases, where the returned value is not what
you might expect.

4.2 Tidy Data

4.2.1 Wide vs. Tall Data

4.2.1.1 Wide Data

• First column has unique entries

• Easier for humans to read and compute on

• Harder for machines to compute on

4.2.1.2 Tall Data

• First column has repeating entries

• Harder for humans to read and compute on

• Easier for machines to compute on

4.2.1.3 Examples

Example 1 (Wide)

Person Age Weight Height
Bob 32 168 180
Alice 24 150 175
Steve 64 144 165
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Example 1 (Tall)

Person Variable Value
Bob Age 32
Bob Weight 168
Bob Height 180
Alice Age 24
Alice Weight 150
Alice Height 175
Steve Age 64
Steve Weight 144
Steve Height 165

[Source: Wikipedia - Wide and narrow data]

Example 2 (Wide)

Team Points Assists Rebounds
A 88 12 22
B 91 17 28
C 99 24 30
D 94 28 31

Example 2 (Tall)

Team Variable Value
A Points 88
A Assists 12
A Rebounds 22
B Points 91
B Assists 17
B Rebounds 28
C Points 99
C Assists 24
C Rebounds 30
D Points 94
D Assists 28
D Rebounds 31
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[Source: Statology - Long vs wide data]

4.2.1.4 Pivoting Wider and Longer

• Error control at input and analysis is format-dependent.

• Switching between long and wide formats useful to control errors.

• Easy with the {tidyr} package functions

tidyr::pivot_longer()
tidyr::pivot_wider()

4.2.2 Tidy What?

Figure 4.1: [Image: R4DS - Chapter 12]

Tidy Data is an opinionated way to store tabular data.

Image Source: Chapter 12 of R for Data Science.

• Each column corresponds to a exactly one measured variable
• Each row corresponds to exactly one observational unit
• Each cell contains exactly one value.

Benefits of tidy data

• Consistent data format: Reduces cognitive load and allows specialised tools (functions)
to efficiently work with tabular data.

• Vectorisation: Keeping variables as columns allows for very efficient data manipulation.
(this goes back to data frames and tibbles being lists of vectors)
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4.2.3 Example - Tidy Longer

Consider trying to plot these data as time series. The year variable is trapped in the column
names!

#> # A tibble: 3 x 3
#> country `1999` `2000`
#> <chr> <dbl> <dbl>
#> 1 Afghanistan 745 2666
#> 2 Brazil 37737 80488
#> 3 China 212258 213766

To tidy this data, we need to pivot_longer(). We will turn the column names into a new
year variable and retaining cell contents as a new variable called cases.

library(magrittr)

countries %>%
tidyr::pivot_longer(cols = c(`1999`,`2000`), names_to = "year", values_to = "cases")

#> # A tibble: 6 x 3
#> country year cases
#> <chr> <chr> <dbl>
#> 1 Afghanistan 1999 745
#> 2 Afghanistan 2000 2666
#> 3 Brazil 1999 37737
#> 4 Brazil 2000 80488
#> 5 China 1999 212258
#> 6 China 2000 213766

Much better!

4.2.4 Example - Tidy Wider

There are other times where we might have to widen our data to tidy it.

This example is not tidy. Why not?

Team Variable Value
A Points 88
A Assists 12
A Rebounds 22
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Team Variable Value
B Points 91
B Assists 17
B Rebounds 28
C Points 99
C Assists 24
C Rebounds 30
D Points 94
D Assists 28
D Rebounds 31

The observational unit here is a team. However, each variable should be a stored in a separate
column, with cells containing their values.

To tidy this data we first generate it as a tibble. We use the tribble() function, which allows
us to create a tibble row-wise rather than column-wise.

We can then tidy it by creating new columns for each value of the current Variable column
and taking the values for these from the current Value column.

tournament %>%
tidyr::pivot_wider(

id_cols = "Team",
names_from = "Variable",
values_from = "Value")

#> # A tibble: 4 x 4
#> Team Points Assists Rebounds
#> <chr> <dbl> <dbl> <dbl>
#> 1 A 88 12 22
#> 2 B 91 17 28
#> 3 C 99 24 30
#> 4 D 94 28 31

4.2.5 Other helpful functions

The pivot_*() family of functions resolve issues with rows (too many observations per row
or rows per observation).

There are similar helper functions to solve column issues:

• Multiple variables per column: tidyr::separate(),

• Multiple columns per variable: tidyr::unite().
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4.2.6 Missing Data

In tidy data, every cell contains a value. Including cells with missing values.

• Missing values are coded as NA (generic) or a type-specific NA, such as NA_character_.

• The {readr} family of read_*() function have good defaults and helpful na argument.

• Explicitly code NA values when collecting data, avoid ambiguity: ” “, -999 or worst of
all 0.

• More on missing values in EDA videos…

4.3 Wrapping Up

1. Reading in tabular data by a range of methods

2. Introduced the tibble and tidy data (+ tidy not always best)

3. Tools for tidying messy tabular data

4.4 Session Information

R version 4.3.1 (2023-06-16)

Platform: x86_64-apple-darwin20 (64-bit)

locale: en_US.UTF-8||en_US.UTF-8||en_US.UTF-8||C||en_US.UTF-8||en_US.UTF-8

attached base packages: stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: magrittr(v.2.0.3)

loaded via a namespace (and not attached): crayon(v.1.5.2), vctrs(v.0.6.5), cli(v.3.6.2),
knitr(v.1.45), rlang(v.1.1.2), xfun(v.0.41), purrr(v.1.0.2), generics(v.0.1.3), jsonlite(v.1.8.8),
glue(v.1.6.2), bit(v.4.0.5), htmltools(v.0.5.7), hms(v.1.1.3), fansi(v.1.0.6), rmarkdown(v.2.25),
pander(v.0.6.5), evaluate(v.0.23), tibble(v.3.2.1), tzdb(v.0.4.0), fastmap(v.1.1.1), yaml(v.2.3.8),
lifecycle(v.1.0.4), compiler(v.4.3.1), dplyr(v.1.1.4), Rcpp(v.1.0.11), pkgconfig(v.2.0.3),
tidyr(v.1.3.0), rstudioapi(v.0.15.0), digest(v.0.6.33), R6(v.2.5.1), tidyselect(v.1.2.0),
readr(v.2.1.4), utf8(v.1.2.4), parallel(v.4.3.1), vroom(v.1.6.5), pillar(v.1.9.0), withr(v.2.5.2),
tools(v.4.3.1) and bit64(v.4.0.5)
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5 Web Scraping

Note

Effective Data Science is still a work-in-progress. This chapter is largely complete and
just needs final proof reading.
If you would like to contribute to the development of EDS, you may do so at https:
//github.com/zakvarty/data_science_notes.

5.1 Scraping webpage data using {rvest}

You can’t always rely on tidy, tabular data to land on your desk. Sometimes you are going to
have to go out and gather data for yourself.

I’m not suggesting you will need to do this manually, but you will likely need to get data from
the internet that’s been made publicly or privately available to you.

This might be information from a webpage that you gather yourself, or data shared with you
by a collaborator using an API.

In this chapter we will cover the basics of scraping webpages, following the vignette for the
{rvest} package.

5.2 What is a webpage?

Before we can even hope to get data from a webpage, we first need to understand what a
webpage is.

Webpages are written in a similar way to LaTeX: the content and styling of webpages are
handled separately and are coded using plain text files.

In fact, websites go one step further than LaTeX. The content and styling of websites are
written in different files and in different languages. HTML (HyperText Markup Language)
is used to write the content and then CSS (Cascading Style Sheets) are used to control the
appearance of that content when it’s displayed to the user.
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5.3 HTML

A basic HTML page with no styling applied might look something like this:

<html>
<head>
<title>Page title</title>

</head>
<body>
<h1 id='first'>A level 1 heading</h1>
<p>Hello World!</p>
<p>Here is some plain text &amp; <b>some bold text.</b></p>
<img src='myimg.png' width='100' height='100'>

</body>

5.3.1 HTML elements

Just like XML data files, HTML has a hierarchical structure. This structure is crafted using
HTML elements. Each HTML element is made up of of a start tag, optional attributes, an
end tag.

We can see each of these in the first level header, where <h1> is the opening tag, id='first'
is an additional attribute and </h1> is the closing tag. Everything between the opening and
closing tag are the contents of that element. There are also some special elements that consist
of only a single tag and its optional attributes. An example of this is the <img> tag.

Since < and > are used for start and end tags, you can’t write them directly in an HTML
document. Instead, you have to use escape characters. This sounds fancy, but it’s just an
alternative way to write characters that serve some special function within a language.

You can write greater than &gt; and less than as &lt;. You might notice that those escapes
use an ampersand (&). This means that if you want a literal ampersand on your webpage,
you have to escape too using &amp;.

There are a wide range of possible HTML tags and escapes. We’ll cover the most common
tags in this lecture and you don’t need to worry about escapes too much because {rvest} will
automatically handle them for you.

5.3.2 Important HTML Elements

In all, there are in excess of 100 HTML elements. The most important ones for you to know
about are:
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• The <html> element, that must enclose every HTML page. The <html> element must
have two child elements within it. The <head> element contains metadata about the
document, like the page title that is shown in the browser tab and the CSS style sheet
that should be applied. The <body> element then contains all of the content that you
see in the browser.

• Block elements are used to give structure to the page. These are elements like headings,
sub-headings and so on from <h1> all the way down to <h6>. This category also contains
paragraph elements <p>, ordered lists <ol> unordered lists <ul>.

• Finally, inline tags like <b> for bold, <i> for italics, and <a> for hyperlinks are used to
format text inside block elements.

When you come across a tag that you’ve never seen before, you can find out what it does with
just a little bit of googling. A good resource here is the MDN Web Docs which are produced by
Mozilla, the company that makes the Firefox web browser. The W3schools website is another
great resource for web development and coding resources more generally.

5.4 HTML Attributes

We’ve seen one example of a header with an additional attribute. More generally, all tags
can have named attributes. These attributes are contained within the opening tag and look
something like:

<tag attribute1='value1' attribute2='value2'>element contents</tag>

Two of the most important attributes are id and class. These attributes are used in con-
junction with the CSS file to control the visual appearance of the page. These are often very
useful to identify the elements that you are interested in when scraping data off a page.

5.5 CSS Selectors

The Cascading Style Sheet is used to describe how your HTML content will be displayed. To
do this, CSS has it’s own system for selecting elements of a webpage, called CSS selectors.

CSS selectors define patterns for locating the HTML elements that a particular style should be
applied to. A happy side-effect of this is that they can sometimes be very useful for scraping,
because they provide a concise way of describing which elements you want to extract.

CSS Selectors can work on the level of an element type, a class, or a tag and these can be used
in a nested (or cascading) way.
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• The p selector will select all paragraph <p> elements.

• The .title selector will select all elements with class “title”.

• The p.special selector will select all<p> elements with class “special”.

• The #title selector will select the element with the id attribute “title”.

When you want to select a single element id attributes are particularly useful because that
must be unique within a html document. Unfortunately, this is only helpful if the developer
added an id attribute to the element(s) you want to scrape!

If you want to learn more CSS selectors I recommend starting with the fun CSS diner tutorial
to build a base of knowledge and then using the W3schools resources as a reference to explore
more webpages in the wild.

5.6 Which Attributes and Selectors Do You Need?

To scrape data from a webpage, you first have to identify the tag and attribute combinations
that you are interested in gathering.

To find your elements of interest, you have three options. These go from hardest to easiest
but also from most to least robust.

• right click + “inspect page source” (F12)
• right click + “inspect”
• Rvest Selector Gadget (very useful but fallible)

Inspecting the source of some familiar websites can be a useful way to get your head around
these concepts. Beware though that sophisticated webpages can be quite intimidating. A
good place to start is with simpler, static websites such as personal websites, rather than the
dynamic webpages of online retailers or social media platforms.

5.7 Reading HTML with {rvest}

With {rvest}, reading a html page can be as simple as loading in tabular data.

html <- rvest::read_html("https://www.zakvarty.com/professional/teaching.html")

The class of the resulting object is an xml_document. This type of object is from the low-level
package {xml2}, which allows you to read xml files into R.
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class(html)
#> [1] "xml_document" "xml_node"

We can see that this object is split into several components: first is some metadata on the
type of document we have scraped, followed by the head and then the body of that html
document.

html
#> {html_document}
#> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
#> [1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UT ...
#> [2] <body class="nav-fixed">\n\n<div id="quarto-search-results"></div>\n ...

We have several possible approaches to extracting information from this document.

5.8 Extracting HTML elements

In {rvest} you can extract a single element with html_element(), or all matching elements
with html_elements(). Both functions take a document object and one or more CSS selectors
as inputs.

library(rvest)

html %>% html_elements("h1")
#> {xml_nodeset (1)}
#> [1] <h1>Teaching</h1>
html %>% html_elements("h2")
#> {xml_nodeset (2)}
#> [1] <h2 id="toc-title">On this page</h2>
#> [2] <h2 class="anchored" data-anchor-id="course-history">Course History</h2>
html %>% html_elements("p")
#> {xml_nodeset (7)}
#> [1] <p>I am fortunate to have had the opportunity to teach in a variety of ...
#> [2] <p>Developing and teaching a number of modules in statistics, data sci ...
#> [3] <p>Supervising undergraduate, postgraduate and doctoral research proje ...
#> [4] <p>Adapting and leading short courses on scientific writing and commun ...
#> [5] <p>Running workshops and computer labs for undergraduate and postgradu ...
#> [6] <p>Speaking at univerisity open days and providing one-to-one tuition ...
#> [7] <p>I am an associate fellow of the Higher Education Academy, which you ...
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You can also combine and nest these selectors. For example you might want to extract all
links that are within paragraphs and all second level headers.

html %>% html_elements("p a,h2")
#> {xml_nodeset (3)}
#> [1] <h2 id="toc-title">On this page</h2>
#> [2] <a href="https://www.advance-he.ac.uk/fellowship/associate-fellowship" ...
#> [3] <h2 class="anchored" data-anchor-id="course-history">Course History</h2>

5.9 Extracting Data From HTML Elements

Now that we’ve got the elements we care about extracted from the complete document. But
how do we get the data we need out of those elements?

You’ll usually get the data from either the contents of the HTML element or else from one of
it’s attributes. If you’re really lucky, the data you need will already be formatted for you as a
HTML table or list.

5.9.1 Extracting text

The functions rvest::html_text() and rvest::html_text2() can be used to extract the
plain text contents of an HTML element.

html %>%
html_elements("#teaching li") %>%
html_text2()

#> [1] "Developing and teaching a number of modules in statistics, data science and data ethics. These were predominantly at the postgradute-level and include courses designed for in-person and remote learning."
#> [2] "Supervising undergraduate, postgraduate and doctoral research projects."
#> [3] "Adapting and leading short courses on scientific writing and communication."
#> [4] "Running workshops and computer labs for undergraduate and postgraduate modules."
#> [5] "Speaking at univerisity open days and providing one-to-one tuition to high school students."

The difference between html_text() and html_text2() is in how they handle whitespace. In
HTML whitespace and line breaks have very little influence over how the code is interpreted by
the computer (this is similar to R but very different from Python). html_text() will extract
the text as it is in the raw html, while html_text2() will do its best to extract the text in a
way that gives you something similar to what you’d see in the browser.
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5.9.2 Extracting Attributes

Attributes are also used to record information that you might like to collect. For example, the
destination of links are stored in the href attribute and the source of images is stored in the
src attribute.

As an example of this, consider trying to extract the twitter link from the icon in the page
footer. This is quite tricky to locate in the html source, so I used the Selector Gadget to help
find the correct combination of elements.

html %>% html_element(".compact:nth-child(1) .nav-link")
#> {html_node}
#> <a class="nav-link" href="https://www.twitter.com/zakvarty">
#> [1] <i class="bi bi-twitter" role="img">\n</i>

To extract the href attribute from the scraped element, we use the rvest::html_attr()
function.

html %>%
html_elements(".compact:nth-child(1) .nav-link") %>%
html_attr("href")

#> [1] "https://www.twitter.com/zakvarty"

Note: rvest::html_attr() will always return a character string (or list of character strings).
If you are extracting an attribute that describes a quantity, such as the width of an image,
you’ll need to convert this from a string to your required data type. For example, of the width
is measures in pixels you might use as.integer().

5.9.3 Extracting tables

HTML tables are composed in a similar, nested manner to LaTeX tables.

There are four main elements to know about that make up an HTML table:

• <table>,
• <tr> (table row),
• <th> (table heading),
• <td> (table data).

Here’s our simple example data, formatted as an HTML table:

html_2 <- minimal_html("
<table>
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<tr>
<th>Name</th>
<th>Number</th>

</tr>
<tr>
<td>A</td>
<td>1</td>

</tr>
<tr>
<td>B</td>
<td>2</td>

</tr>
<tr>
<td>C</td>
<td>3</td>

</tr>
</table>
")

Since tables are a common way to store data, {rvest} includes a useful function html_table()
that converts directly from an HTML table into a tibble.

html_2 %>%
html_element("table") %>%
html_table()

#> # A tibble: 3 x 2
#> Name Number
#> <chr> <int>
#> 1 A 1
#> 2 B 2
#> 3 C 3

Applying this to our real scraped data we can easily extract the table of taught courses.

html %>%
html_element("table") %>%
html_table()

#> # A tibble: 31 x 3
#> Year Course Role
#> <chr> <chr> <chr>
#> 1 "2022-23" Data Science Lecturer
#> 2 "" Ethics in Data Science I, II and III Lecturer
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#> 3 "" Data Ethics for Digital Chemistry Lecturer
#> 4 "" Y1 research projects: point process models Lecturer
#> 5 "2021-22" Supervised Learning Lecturer
#> 6 "" Ethics in Data Science I Lecturer
#> # i 25 more rows

5.10 Tip for Building Tibbles

When scraping data from a webpage, your end-goal is typically going to be constructing a
data.frame or a tibble.

If you are following our description of tidy data, you’ll want each row to correspond some
repeated unit on the HTML page. In this case, you should

1. Use html_elements() to select the elements that contain each observation unit;
2. Use html_element() to extract the variables from each of those observations.

Taking this approach guarantees that you’ll get the same number of values for each variable,
because html_element() always returns the same number of outputs as inputs. This is vital
when you have missing data - when not every observation unit has a value for every variable
of interest.

As an example, consider this extract of text about the starwars dataset.

starwars_html <- minimal_html("
<ul>

<li><b>C-3PO</b> is a <i>droid</i> that weighs <span class='weight'>167 kg</span></li>
<li><b>R2-D2</b> is a <i>droid</i> that weighs <span class='weight'>96 kg</span></li>
<li><b>Yoda</b> weighs <span class='weight'>66 kg</span></li>
<li><b>R4-P17</b> is a <i>droid</i></li>

</ul>
")

This is an unordered list where each list item corresponds to one observational unit (one
character from the starwars universe). The name of the character is given in bold, the character
species is specified in italics and the weight of the character is denoted by the .weight class.
However, some characters have only a subset of these variables defined: for example Yoda has
no species entry.

If we try to extract each element directly, our vectors of variable values are of different lengths.
We don’t know where the missing values should be, so we can’t line them back up to make a
tibble.
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starwars_html %>% html_elements("b") %>% html_text2()
#> [1] "C-3PO" "R2-D2" "Yoda" "R4-P17"
starwars_html %>% html_elements("i") %>% html_text2()
#> [1] "droid" "droid" "droid"
starwars_html %>% html_elements(".weight") %>% html_text2()
#> [1] "167 kg" "96 kg" "66 kg"

What we should do instead is start by extracting all of the list item elements using
html_elements(). Once we have done this, we can then use html_element() to extract
each variable for all characters. This will pad with NAs, so that we can collate them into a
tibble.

starwars_characters <- starwars_html %>% html_elements("li")

starwars_characters %>% html_element("b") %>% html_text2()
#> [1] "C-3PO" "R2-D2" "Yoda" "R4-P17"
starwars_characters %>% html_element("i") %>% html_text2()
#> [1] "droid" "droid" NA "droid"
starwars_characters %>% html_element(".weight") %>% html_text2()
#> [1] "167 kg" "96 kg" "66 kg" NA

tibble::tibble(
name = starwars_characters %>% html_element("b") %>% html_text2(),
species = starwars_characters %>% html_element("i") %>% html_text2(),
weight = starwars_characters %>% html_element(".weight") %>% html_text2()

)
#> # A tibble: 4 x 3
#> name species weight
#> <chr> <chr> <chr>
#> 1 C-3PO droid 167 kg
#> 2 R2-D2 droid 96 kg
#> 3 Yoda <NA> 66 kg
#> 4 R4-P17 droid <NA>

5.11 Session Information

R version 4.3.1 (2023-06-16)

Platform: x86_64-apple-darwin20 (64-bit)

locale: en_US.UTF-8||en_US.UTF-8||en_US.UTF-8||C||en_US.UTF-8||en_US.UTF-8
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attached base packages: stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: rvest(v.1.0.3)

loaded via a namespace (and not attached): vctrs(v.0.6.5), httr(v.1.4.7), cli(v.3.6.2),
knitr(v.1.45), rlang(v.1.1.2), xfun(v.0.41), stringi(v.1.8.3), jsonlite(v.1.8.8), glue(v.1.6.2),
selectr(v.0.4-2), htmltools(v.0.5.7), fansi(v.1.0.6), rmarkdown(v.2.25), pander(v.0.6.5), evalu-
ate(v.0.23), tibble(v.3.2.1), fastmap(v.1.1.1), yaml(v.2.3.8), lifecycle(v.1.0.4), stringr(v.1.5.1),
compiler(v.4.3.1), Rcpp(v.1.0.11), pkgconfig(v.2.0.3), rstudioapi(v.0.15.0), digest(v.0.6.33),
R6(v.2.5.1), utf8(v.1.2.4), pillar(v.1.9.0), curl(v.5.2.0), magrittr(v.2.0.3), tools(v.4.3.1) and
xml2(v.1.3.6)
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6 APIs

Note

Effective Data Science is still a work-in-progress. This chapter is largely complete and
just needs final proof reading.
If you would like to contribute to the development of EDS, you may do so at https:
//github.com/zakvarty/data_science_notes.

6.1 Aquiring Data Via an API

We’ve already established that you can’t always rely on tidy, tabular data to land on your
desk.

Sometimes you are going to have to go out and gather data for yourself. We have already seen
how to scrape information directly from the HTML source of a webpage. But surely there has
to be an easer way. Thankfully, there often is!

In this chapter we will cover the basics of obtaining data via an API. This material draws
together the Introduction to APIs book by Brian Cooksey and the DIY web data section of
STAT545 at the University of British Columbia.

6.2 Why do I need to know about APIs?

An API, or application programming interface, is a set of rules that allows different
software applications to communicate with each other.

As a data scientist, you will often need to access data that is stored on remote servers or in
cloud-based services. APIs provide a convenient way for data scientists to programmatically
retrieve this data, without having to manually download data sets or and process them locally
on their own computer.

This has multiple benefits including automation and standardisation of data sharing.
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• Automation: It is much faster for a machine to process a data request than a human.
Having a machine handling data requests also scales much better as either the number or
the complexity of data requests grows. Additionally, there is a lower risk of introducing
human error. For example, a human might accidentally share the wrong data, which can
have serious legal repercussions.

• Standardisation: Having a machine process data requests requires the format of these
requests and the associated responses to be standardised. This allows data sharing and
retrieval to become a reproducible and programmatic aspect of our work.

6.3 What is an API?

So then, if APIs are so great, what exactly are they?

In human-to-human communication, the set of rules governing acceptable behaviour is known
as etiquette. Depending on when or where you live, social etiquette can be rather strict. The
rules for computer-to-computer communication take this to a whole new level, because with
machines there can be no room left for interpretation.

The set of rules governing interactions between computers or programmes is known as a pro-
tocol.

APIs provide a standard protocol for different programs to interact with one another. This
makes it easier for developers to build complex systems by leveraging the functionality of
existing services and platforms. The benefits of working in a standardised and modular way
apply equally well to sharing data as they do to writing code or organising files.

There are two sides to communication and when machines communicate these are known as
the server and the client.

Servers can seem intimidating, because unlike your laptop or mobile phone they don’t have
their own input and output devices; they have no keyboard, no monitor, and no a mouse.
Despite this, servers are just regular computers that are designed to store data and run pro-
grammes. Servers don’t have their own input or output devices because they are intended to
be used remotely, via another computer. There is no need for a screen or a mouse if the user
is miles away. Nothing scary going on here!

People often find clients much less intimidating - they are simply any other computer or
application that might contact the sever.
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6.4 HTTP

This leads us one step further down the rabbit-hole. An API is a protocol that defines the
rules of how applications communicate with one another. But how does this communication
happen?

HTTP (Hypertext Transfer Protocol) is the dominant mode communication on the World Wide
Web. You can see the secure version of HTTP, HTTPS, at the start of most web addresses up
at the top of your browser. For example:

https://www.zakvarty.com/blog

HTTP is the foundation of data communication on the web and is used to transfer files (such
as text, images, and videos) between web servers and clients.

To understand HTTP communications, I find it helpful to imagine the client and the server as
being a customer and a waiter at a restaurant. The client makes some request to the server,
which then tries to comply before giving a response. The server might respond to confirm that
the request was completed successfully. Alternatively, the server might respond with an error
message, which is (hopefully) informative about why the request could not be completed.

This request-response model is the basis for HTTP, the communication system used by the
majority of APIs.

6.5 HTTP Requests

An HTTP request consists of:

• Uniform Resource Locator (URL) [unique identifier for a thing]
• Method [tells server the type of action requested by client]
• Headers [meta-information about request, e.g. device type]
• Body [Data the client wants to send to the server]

6.5.1 URL

The URL in a HTTP request specifies where that request is going to be made, for example
http://example.com.
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6.5.2 Method

The action that the client wants to take is indicated by a set of well-defined methods or HTTP
verbs. The most common HTTP verbs are GET, POST, PUT, PATCH, and DELETE.

The GET verb is used to retrieve a resource from the server, such as a web page or an image.
The POST verb is used to send data to the server, such as when submitting a form or uploading
a file. The PUT verb is used to replace a resource on the server with a new one, while the
PATCH verb is used to update a resource on the server without replacing it entirely. Finally,
the DELETE verb is used to delete a resource from the server.

In addition to these common HTTP verbs, there are also several less frequently used verbs.
These are used for specialized purposes, such as requesting only the headers of a resource, or
testing the connectivity between the client and the server.

6.5.3 Header

The request headers contain meta-information about the request. This is where information
about the device type would be included within the request.

6.5.4 Body

Finally, the body of the request contains the data that the client is providing to the server.

6.6 HTTP Responses

When the server receives a request it will attempt to fulfil it and then send a response back to
the client.

A response has a similar structure to a request apart from:

• responses do not have a URL,
• responses do not have a method,
• responses have a status code.
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6.6.1 Status Codes

The status code is a 3 digit number, each of which has a specific meaning. Some common error
codes that you might (already have) come across are:

• 200: Success,
• 404: Page not found (all 400s are errors),
• 503: Page down.

In a data science context, a successful response will return the requested data within the data
field. This will most likely be given in JSON or XML format.

6.7 Authentication

Now that we know how applications communicate, you might ask how we can control who has
access to the API and what types of request they can make. This can be done by the server
setting appropriate permissions for each client. But then how does the server verify that the
client is really who is claims to be?

Authentication is a way to ensure that only authorized clients are able to access an API. This
is typically done by the server requiring each client to provide some secret information that
uniquely identifies them, whenever they make requests to the API. This information allows
the API server to validate the authenticity this user before it authorises the request.

6.7.1 Basic Authentication

There are various ways to implement API authentication.

Basic authentication involves each legitimate client having a username and password. An
encrypted version of these is included in the Authorization header of the HTTP request. If
the hear matches with the server’s records then the request is processed. If not, then a special
status code (401) is returned to the client.

Basic authentication is dangerous because it does not put any restrictions on what a client can
do once they are authorised. Additional, individualised restrictions can be added by using an
alternative authentication scheme.
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6.7.2 API Key Authentication

An API key is long, random string of letters and numbers that is assigned to each authorised
user. An API key is distinct from the user’s password and keys are typically issued by the
service that provides an API. Using keys rather than basic authentication allows the API
provider to track and limit the usage of their API.

For example, a provider may issue a unique API key to each developer or organization that
wants to use the API. The provider can then limit access to certain data. They could also
limit the number of requests that each key can make in a given time period or prevent access
to certain administrative functions, like changing passwords or deleting accounts.

Unlike Basic Authentication, there is no standard way of a client sharing a key with the server.
Depending on the API this might be in the Authorization field of the header, at the end of
the URL (http://example.com?api_key=my_secret_key), or within the body of the data.

6.8 API wrappers

We’ve learned a lot about how the internet works. Fortunately, a lot of the time we won’t have
to worry about all of that new information other than for debugging purposes.

In the best case scenario, a very kind developer has written a “wrapper” function for the API.
These wrappers are functions in R that will construct the HTTP request for you. If you are
particularly lucky, the API wrapper will also format the response for you, converting it from
XML or JSON back into an R object that is ready for immediate use.

6.9 {geonames} wrapper

rOpenSci has a curated list of many wrappers for accessing scientific data using R. We will
focus on the GeoNames API, which gives open access to a geographical database. To access
this data, we will use wrapper functions provided by the {geonames} package.

The aim here is to illustrate the important steps of getting started with a new API.

6.9.1 Set up

Before we can get any data from the GeoNames API, we first need to do a little bit of set
up.

1. Install and load {geonames} from CRAN
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#install.packages("geonames")
library(geonames)

2. Create a user account for the GeoNames API

3. Activate the account (see activation email)

4. Enable the free web services for your GeoNames account by logging in at this link.

5. Tell R your credentials for GeoNames.
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Warning

We could use the following code to tell R our credentials, but we absolutely should
not.

options(geonamesUsername = "example_username")

This would save our username as an environment variable, but it also puts our API
credentials directly into the script. If we share the script with others (internally, externally
or publicly) we would be sharing our credentials too. Not good!

6.9.2 Keep it Secret, Keep it Safe

The solution to this problem is to add our credentials as environment variables in our
.Rprofile rather than in this script. The .Rprofile is an R script that is run at the start of
every session. It can be created and edited directly, but can also be created and edited from
within R.

To make/open your .Rprofile use the edit_r_profile() function from the {usethis} pack-
age.

library(usethis)
usethis::edit_r_profile()

Within this file, add options(geonamesUsername="example_username") on a new line, re-
membering to replace example_username with your own GeoNames username.
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The final step is to check this this file ends with a blank line, save it and restart R. Then
we are all set to start using {geonames}.

This set up procedure is indicative of most API wrappers, but of course the details will vary
between each API. This is why good documentation is important!

If you are using {renv} to track the versions of R and the packages you are using take care.
For {renv} to be effective you have to place your project level .Rprofile under version control
- this means you might accidentally share your API credentials.

A workaround for this problem is to create an R file that you source() from within the project
level .Rprofile but is included in .gitignore, so that your credentials remain secret.

6.9.3 Using {geonames}

GeoNames has a whole host of different geo-datasets that you can explore. As a first exam-
ple, let’s get all of the geo-tagged wikipedia articles that are within 1km of Imperial College
London.

imperial_coords <- list(lat = 51.49876, lon = -0.1749)
search_radius_km <- 1

imperial_neighbours <- geonames::GNfindNearbyWikipedia(
lat = imperial_coords$lat,
lng = imperial_coords$lon,
radius = search_radius_km,
lang = "en", # english language articles
maxRows = 500 # maximum number of results to return

)

Looking at the structure of imperial_neighbours we can see that it is a data frame with one
row per geo-tagged wikipedia article.

str(imperial_neighbours)
#> 'data.frame': 204 obs. of 13 variables:
#> $ summary : chr "The Department of Mechanical Engineering is responsible for teaching and research in mechanical engineering at "| __truncated__ "Imperial College Business School is a global business school located in London. The business school was opened "| __truncated__ "Exhibition Road is a street in South Kensington, London which is home to several major museums and academic est"| __truncated__ "Imperial College School of Medicine (ICSM) is the medical school of Imperial College London in England, and one"| __truncated__ ...
#> $ elevation : chr "20" "18" "19" "24" ...
#> $ feature : chr "edu" "edu" "landmark" "edu" ...
#> $ lng : chr "-0.1746" "-0.1748" "-0.17425" "-0.1757" ...
#> $ distance : chr "0.0335" "0.0494" "0.0508" "0.0558" ...
#> $ rank : chr "81" "91" "90" "96" ...
#> $ lang : chr "en" "en" "en" "en" ...
#> $ title : chr "Department of Mechanical Engineering, Imperial College London" "Imperial College Business School" "Exhibition Road" "Imperial College School of Medicine" ...
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#> $ lat : chr "51.498524" "51.4992" "51.4989722222222" "51.4987" ...
#> $ wikipediaUrl: chr "en.wikipedia.org/wiki/Department_of_Mechanical_Engineering%2C_Imperial_College_London" "en.wikipedia.org/wiki/Imperial_College_Business_School" "en.wikipedia.org/wiki/Exhibition_Road" "en.wikipedia.org/wiki/Imperial_College_School_of_Medicine" ...
#> $ countryCode : chr NA "AE" NA "GB" ...
#> $ thumbnailImg: chr NA NA NA NA ...
#> $ geoNameId : chr NA NA NA NA ...

To confirm we have the correct location we can inspect the title of the first five neighbours.

imperial_neighbours$title[1:5]
#> [1] "Department of Mechanical Engineering, Imperial College London"
#> [2] "Imperial College Business School"
#> [3] "Exhibition Road"
#> [4] "Imperial College School of Medicine"
#> [5] "Department of Civil and Environmental Engineering, Imperial College London"

Nothing too surprising here, mainly departments of the college and Exhibition Road, which
runs along one side of the campus. These sorts of check are important - I initially forgot the
minus in the longitude and was getting results in East London!

6.10 What if there is no wrapper?

If there is not a wrapper function, we can still access APIs fairly easilty using the {httr}
package.

We will look at an example using OMDb, which is an open source version of IMDb, to get
information about the movie Mean Girls.

To use the OMDB API you will once again need to request a free API key, follow a verification
link and add your API key to your .Rprofile.

# Add this to .Rprofile, pasting in your own API key
options(OMDB_API_Key = "PASTE YOUR KEY HERE")

You can then restart R and safely access your API key from within your R session.

# Load your API key into the current R session
ombd_api_key <- getOption("OMDB_API_Key")

Using the documentation for the API, requests have URLs of the following form, where terms
in angular brackets should be replaced by you.

http://www.omdbapi.com/?t=<TITLE>&y=<YEAR>&plot=<LENGTH>&r=<FORMAT>&apikey=<API_KEY>
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With a little bit of effort, we can write a function that composes this type of request URL for
us. We will using the {glue} package to help us join strings together.

Running the example we get:

mean_girls_request <- omdb_url(
title = "mean+girls",
year = "2004",
plot = "short",
format = "json",
api_key = getOption("OMDB_API_Key"))

We can then use the {httr} package to construct our request and store the response we get.

#> [1] 200

Thankfully it was a success! If you get a 401 error code here, check that you have clicked the
activation link for your API key.

The full structure of the response is quite complicated, but we can easily extract the requested
data using content()

#> $Title
#> [1] "Mean Girls"
#>
#> $Year
#> [1] "2004"
#>
#> $Rated
#> [1] "PG-13"
#>
#> $Released
#> [1] "30 Apr 2004"
#>
#> $Runtime
#> [1] "97 min"
#>
#> $Genre
#> [1] "Comedy"
#>
#> $Director
#> [1] "Mark Waters"
#>
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#> $Writer
#> [1] "Rosalind Wiseman, Tina Fey"
#>
#> $Actors
#> [1] "Lindsay Lohan, Jonathan Bennett, Rachel McAdams"
#>
#> $Plot
#> [1] "Cady Heron is a hit with The Plastics, the A-list girl clique at her new school, until she makes the mistake of falling for Aaron Samuels, the ex-boyfriend of alpha Plastic Regina George."
#>
#> $Language
#> [1] "English, German, Vietnamese, Swahili"
#>
#> $Country
#> [1] "United States, Canada"
#>
#> $Awards
#> [1] "7 wins & 25 nominations"
#>
#> $Poster
#> [1] "https://m.media-amazon.com/images/M/MV5BMjE1MDQ4MjI1OV5BMl5BanBnXkFtZTcwNzcwODAzMw@@._V1_SX300.jpg"
#>
#> $Ratings
#> $Ratings[[1]]
#> $Ratings[[1]]$Source
#> [1] "Internet Movie Database"
#>
#> $Ratings[[1]]$Value
#> [1] "7.1/10"
#>
#>
#> $Ratings[[2]]
#> $Ratings[[2]]$Source
#> [1] "Rotten Tomatoes"
#>
#> $Ratings[[2]]$Value
#> [1] "84%"
#>
#>
#> $Ratings[[3]]
#> $Ratings[[3]]$Source
#> [1] "Metacritic"
#>
#> $Ratings[[3]]$Value
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#> [1] "66/100"
#>
#>
#>
#> $Metascore
#> [1] "66"
#>
#> $imdbRating
#> [1] "7.1"
#>
#> $imdbVotes
#> [1] "425,799"
#>
#> $imdbID
#> [1] "tt0377092"
#>
#> $Type
#> [1] "movie"
#>
#> $DVD
#> [1] "01 Aug 2013"
#>
#> $BoxOffice
#> [1] "$86,058,055"
#>
#> $Production
#> [1] "N/A"
#>
#> $Website
#> [1] "N/A"
#>
#> $Response
#> [1] "True"

6.11 Wrapping up

We have learned a bit more about how the internet works, the benefits of using an API to
share data and how to request data from Open APIs.

When obtaining data from the internet it’s vital that you keep your credentials safe, and that
don’t do more work than is needed.
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• Keep your API keys out of your code. Store them in your .Rprofile (and make sure
this is not under version control!)

• Scraping is always a last resort. Is there an API already?

• Writing your own code to access an API can be more painful than necessary.

• Don’t repeat other people, if a suitable wrapper exists then use it.

6.12 Session Information

R version 4.3.1 (2023-06-16)

Platform: x86_64-apple-darwin20 (64-bit)

locale: en_US.UTF-8||en_US.UTF-8||en_US.UTF-8||C||en_US.UTF-8||en_US.UTF-8

attached base packages: stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: geonames(v.0.999)

loaded via a namespace (and not attached): digest(v.0.6.33), R6(v.2.5.1), fastmap(v.1.1.1),
xfun(v.0.41), glue(v.1.6.2), knitr(v.1.45), htmltools(v.0.5.7), rmarkdown(v.2.25), cli(v.3.6.2),
pander(v.0.6.5), compiler(v.4.3.1), httr(v.1.4.7), rstudioapi(v.0.15.0), tools(v.4.3.1),
curl(v.5.2.0), evaluate(v.0.23), Rcpp(v.1.0.11), yaml(v.2.3.8), rlang(v.1.1.2) and json-
lite(v.1.8.8)
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Checklist

Note

Effective Data Science is still a work-in-progress. This chapter is largely complete and
just needs final proof reading.
If you would like to contribute to the development of EDS, you may do so at https:
//github.com/zakvarty/data_science_notes.

Videos / Chapters

□ Tabular Data (27 min) [slides]

□ Web Scraping (22 min) [slides]

□ APIs (25 min) [slides]

Reading

Use the Acquiring and Sharing Data section of the reading list to support and guide your
exploration of this week’s topics. Note that these texts are divided into core reading, reference
materials and materials of interest.

Tasks

Core:

• Revisit the Projects that you explored on Github last week. This time look for any data
or documentation files.

– Are there any file types that are new to you?
– If so, are there packages or helper function that would let you read this data into

R?
– Why might you not find many data files on Github?
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• Play CSS Diner to familiarise yourself with some CSS selectors.

• Identify 3 APIs that give access to data on topics that interest you. Write a post on the
discussion forum describing the APIs and use one of them to load some data into R.

• Scraping Book Reviews:

– Visit the Amazon page for R for Data Science. Write code to scrape the percentage
of customers giving each “star” rating (5�, …, 1�).

– Turn your code into a function that will return a tibble of the form:

product n_reviewspercent_5_starpercent_4_starpercent_3_starpercent_2_starpercent_1_starurl
example_name1000 20 20 20 20 20 www.example.com

• Generalise your function to work for other Amazon products, where the function takes
as input a vector of product names and an associated vector of URLs.

• Use your function to compare the reviews of the following three books: R for Data
Science, R packages and ggplot2.

Bonus:

• Add this function to the R package you made last week, remembering to add tests and
documentation.

Live Session

In the live session we will begin with a discussion of this week’s tasks. We will then work
through some examples of how to read data from non-standard sources.

Please come to the live session prepared to discuss the following points:

• Roger Peng states that files can be imported and exported using readRDS() and
saveRDS() for fast and space efficient data storage. What is the downside to doing so?

• What data types have you come across (that we have not discussed already) and in what
context are they used?

• What do you have to give greater consideration to when scraping data than when using
an API?
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Part III

Data Exploration and Visualisation

107



Introduction

Now that we have read our raw data into R we can start getting our data science project
moving and being to see some initial returns on the time and effort that we have invested so
far.

In this section we will explore how to wrangle, explore and visualise the data that forms the
basis of our projects. These skills are often overlooked by folks coming into data science as
being “soft skills” compared to modelling. However, I would argue that this is not the case
because each of these tasks requires its own specialist knowledge and tools.

Additionally, these task make up the majority of data scientist’s work and are often where
we can add the most value to an organisation. At this stage in a project we turn useless,
messy data into a form that can be used; we derive initial insights from this data while making
minimal assumptions; and we communicate all of this in an accurate and engaging way, to
drive decision making both within and outwith the organisation.
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7 Data Wrangling

Note

Effective Data Science is still a work-in-progress. This chapter is largely complete and
just needs final proof reading.
If you would like to contribute to the development of EDS, you may do so at https:
//github.com/zakvarty/data_science_notes.

7.1 What is Data Wrangling?

Okay, so you’ve got some data. That’s a great start!

You might have had it handed to you by a collaborator, requested it via an API or scraped
it from the raw html of a webpage. In the worst case scenario, you’re an actual scientist (not
just a data one) and you spent the last several months of your life painstakingly measuring
flower petals or car parts. Now we really want to do something useful with that data.

We’ve seen already how you can load the data into R and pivot between wider and longer
formats, but that probably isn’t enough to satisfy your curiosity. You want to be able to
view your data, manipulate and subset it, create new variables from existing ones and cross-
reference your dataset with others. All of these are things possible in R and are known under
various collective names including data manipulation, data munging and data wrangling.

I’ve decided to use the term data wrangling here. That’s because data manipulation sounds
boring as heck and data munging is both unpleasant to say and makes me imagine we are
squelching through some sort of information swamp.

In what follows, I’ll give a fly-by tour of tools for data wrangling in R, showing some examples
along the way. I’ll focus on some of the most common and useful operations and link out to
some more extensive guides for wrangling your data in R, that you can refer back to as you
need them.
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7.2 Example Data Sets

To demonstrate some standard skills we will use two datasets. The mtcars data comes built
into any R installation. The second data set we will look at is the penguins data from
{palmerpenguins}.

library(palmerpenguins)
penguins <- palmerpenguins::penguins
cars <- datasets::mtcars

7.3 Viewing Your Data

7.3.1 View()

The View() function can be used to create a spreadsheet-like view of your data. In RStudio
this will open as a new tab.

View() will work for any “matrix-like” R object, such as a tibble, data frame, vector or matrix.
Note the capital letter - the function is called View(), not view().
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7.3.2 head()

For large data sets, you might not want (or be able to) view it all at once. You can then use
head() to view the first few rows. The integer argument n specifies the number of rows you
would like to return.

head(x = penguins, n = 3)
#> # A tibble: 3 x 8
#> species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
#> <fct> <fct> <dbl> <dbl> <int> <int>
#> 1 Adelie Torgers~ 39.1 18.7 181 3750
#> 2 Adelie Torgers~ 39.5 17.4 186 3800
#> 3 Adelie Torgers~ 40.3 18 195 3250
#> # i 2 more variables: sex <fct>, year <int>

7.3.3 str()

An alternative way to view a data set that is large or has a complicated format is to examine
its structure using str(). This is a useful way to inspect list-like objects with a nested
structure.

str(penguins)
#> tibble [344 x 8] (S3: tbl_df/tbl/data.frame)
#> $ species : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...
#> $ island : Factor w/ 3 levels "Biscoe","Dream",..: 3 3 3 3 3 3 3 3 3 3 ...
#> $ bill_length_mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
#> $ bill_depth_mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
#> $ flipper_length_mm: int [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
#> $ body_mass_g : int [1:344] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
#> $ sex : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...
#> $ year : int [1:344] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...

7.3.4 names()

If you just want to access the variable names you can do so with the names() function from
base R.

names(penguins)
#> [1] "species" "island" "bill_length_mm"
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#> [4] "bill_depth_mm" "flipper_length_mm" "body_mass_g"
#> [7] "sex" "year"

Similarly, you can explicitly access the row and column names of a data frame or tibble using
colnames() or rownames().

colnames(cars)
#> [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
#> [11] "carb"

rownames(cars)
#> [1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710"
#> [4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant"
#> [7] "Duster 360" "Merc 240D" "Merc 230"
#> [10] "Merc 280" "Merc 280C" "Merc 450SE"
#> [13] "Merc 450SL" "Merc 450SLC" "Cadillac Fleetwood"
#> [16] "Lincoln Continental" "Chrysler Imperial" "Fiat 128"
#> [19] "Honda Civic" "Toyota Corolla" "Toyota Corona"
#> [22] "Dodge Challenger" "AMC Javelin" "Camaro Z28"
#> [25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2"
#> [28] "Lotus Europa" "Ford Pantera L" "Ferrari Dino"
#> [31] "Maserati Bora" "Volvo 142E"

In the cars data, the car model are stored as the row names. This doesn’t really jive with our
idea of tidy data - we’ll see how to fix that shortly.

7.4 Renaming Variables

7.4.1 colnames()

The function colnames() can be used to set, as well as to retrieve, column names.

cars_renamed <- cars
colnames(cars_renamed)[1] <- "miles_per_gallon"
colnames(cars_renamed)
#> [1] "miles_per_gallon" "cyl" "disp"
#> [4] "hp" "drat" "wt"
#> [7] "qsec" "vs" "am"
#> [10] "gear" "carb"

113



7.4.2 dplyr::rename()

We can also use functions from {dplyr} to rename columns. Let’s alter the second column
name.

library(dplyr)
cars_renamed <- rename(.data = cars_renamed, cylinders = cyl)
colnames(cars_renamed)
#> [1] "miles_per_gallon" "cylinders" "disp"
#> [4] "hp" "drat" "wt"
#> [7] "qsec" "vs" "am"
#> [10] "gear" "carb"

This could be done as part of a pipe if we were making many alterations.

cars_renamed <- cars_renamed %>%
rename(displacement = disp) %>%
rename(horse_power = hp) %>%
rename(rear_axel_ratio = drat)

colnames(cars_renamed)
#> [1] "miles_per_gallon" "cylinders" "displacement"
#> [4] "horse_power" "rear_axel_ratio" "wt"
#> [7] "qsec" "vs" "am"
#> [10] "gear" "carb"

When using the {dplyr} function rename(), you have to remember the format new_name =
old_name. This matches the format used to create a data frame or tibble, but is the opposite
order to the python function of the same name and often catches people out.

In the section on creating new variables, we will see an alternative way of doing this by copying
the column and then deleting the original.

7.5 Subsetting

7.5.1 Base R

In base R you can extract rows, columns and combinations thereof using index notation.

# First row
penguins[1, ]

114



#> # A tibble: 1 x 8
#> species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
#> <fct> <fct> <dbl> <dbl> <int> <int>
#> 1 Adelie Torgers~ 39.1 18.7 181 3750
#> # i 2 more variables: sex <fct>, year <int>

# First Column
penguins[ , 1]
#> # A tibble: 344 x 1
#> species
#> <fct>
#> 1 Adelie
#> 2 Adelie
#> 3 Adelie
#> 4 Adelie
#> 5 Adelie
#> 6 Adelie
#> # i 338 more rows

# Rows 2-3 of columns 1, 2 and 4
penguins[2:3, c(1, 2, 4)]
#> # A tibble: 2 x 3
#> species island bill_depth_mm
#> <fct> <fct> <dbl>
#> 1 Adelie Torgersen 17.4
#> 2 Adelie Torgersen 18

Using negative indexing you can remove rows or columns

# Drop all but first row
penguins[-(2:344), ]
#> # A tibble: 1 x 8
#> species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
#> <fct> <fct> <dbl> <dbl> <int> <int>
#> 1 Adelie Torgers~ 39.1 18.7 181 3750
#> # i 2 more variables: sex <fct>, year <int>

# Drop all but first column
penguins[ , -(2:8)]
#> # A tibble: 344 x 1
#> species
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#> <fct>
#> 1 Adelie
#> 2 Adelie
#> 3 Adelie
#> 4 Adelie
#> 5 Adelie
#> 6 Adelie
#> # i 338 more rows

You can also select rows or columns by their names. This can be done using the bracket syntax
([ ]) or the dollar syntax ($).

penguins[ ,"species"]
#> # A tibble: 344 x 1
#> species
#> <fct>
#> 1 Adelie
#> 2 Adelie
#> 3 Adelie
#> 4 Adelie
#> 5 Adelie
#> 6 Adelie
#> # i 338 more rows
penguins$species
#> [1] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [8] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [15] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [22] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [29] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [36] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [43] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [50] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [57] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [64] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [71] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [78] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [85] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [92] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [99] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [106] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [113] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [120] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
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#> [127] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [134] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [141] Adelie Adelie Adelie Adelie Adelie Adelie Adelie
#> [148] Adelie Adelie Adelie Adelie Adelie Gentoo Gentoo
#> [155] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [162] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [169] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [176] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [183] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [190] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [197] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [204] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [211] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [218] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [225] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [232] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [239] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [246] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [253] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [260] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [267] Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo Gentoo
#> [274] Gentoo Gentoo Gentoo Chinstrap Chinstrap Chinstrap Chinstrap
#> [281] Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap
#> [288] Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap
#> [295] Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap
#> [302] Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap
#> [309] Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap
#> [316] Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap
#> [323] Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap
#> [330] Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap
#> [337] Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap Chinstrap
#> [344] Chinstrap
#> Levels: Adelie Chinstrap Gentoo

Since penguins is a tibble, these return different types of object. Subsetting a tibble with
bracket syntax will return a tibble but extracting a column using the dollar syntax returns a
vector of values.

7.5.2 filter() and select()

{dplyr} has two functions for subsetting, filter() subsets by rows and select() subsets by
column.
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In both functions you list what you would like to retain. Filter and select calls can be piped
together to subset based on row and column values.

penguins %>%
select(species, island, body_mass_g)

#> # A tibble: 344 x 3
#> species island body_mass_g
#> <fct> <fct> <int>
#> 1 Adelie Torgersen 3750
#> 2 Adelie Torgersen 3800
#> 3 Adelie Torgersen 3250
#> 4 Adelie Torgersen NA
#> 5 Adelie Torgersen 3450
#> 6 Adelie Torgersen 3650
#> # i 338 more rows

penguins %>%
select(species, island, body_mass_g) %>%
filter(body_mass_g > 6000)

#> # A tibble: 2 x 3
#> species island body_mass_g
#> <fct> <fct> <int>
#> 1 Gentoo Biscoe 6300
#> 2 Gentoo Biscoe 6050

Subsetting rows can be inverted by negating the filter() statement

penguins %>%
select(species, island, body_mass_g) %>%
filter(!(body_mass_g > 6000))

#> # A tibble: 340 x 3
#> species island body_mass_g
#> <fct> <fct> <int>
#> 1 Adelie Torgersen 3750
#> 2 Adelie Torgersen 3800
#> 3 Adelie Torgersen 3250
#> 4 Adelie Torgersen 3450
#> 5 Adelie Torgersen 3650
#> 6 Adelie Torgersen 3625
#> # i 334 more rows

and dropping columns can done by selecting all columns except the one(s) you want to drop.

118



penguins %>%
select(species, island, body_mass_g) %>%
filter(!(body_mass_g > 6000)) %>%
select(!c(species, island))

#> # A tibble: 340 x 1
#> body_mass_g
#> <int>
#> 1 3750
#> 2 3800
#> 3 3250
#> 4 3450
#> 5 3650
#> 6 3625
#> # i 334 more rows

7.6 Creating New Variables

7.6.1 Base R

We can create new variables in base R by assigning a vector of the correct length to a new
column name.

cars_renamed$weight <- cars_renamed$wt

If we then drop the original column from the data frame, this gives us an alternative way of
renaming columns.

cars_renamed <- cars_renamed[ ,-which(names(cars_renamed) == "wt")]
head(cars_renamed, n = 5)
#> miles_per_gallon cylinders displacement horse_power
#> Mazda RX4 21.0 6 160 110
#> Mazda RX4 Wag 21.0 6 160 110
#> Datsun 710 22.8 4 108 93
#> Hornet 4 Drive 21.4 6 258 110
#> Hornet Sportabout 18.7 8 360 175
#> rear_axel_ratio qsec vs am gear carb weight
#> Mazda RX4 3.90 16.46 0 1 4 4 2.620
#> Mazda RX4 Wag 3.90 17.02 0 1 4 4 2.875
#> Datsun 710 3.85 18.61 1 1 4 1 2.320
#> Hornet 4 Drive 3.08 19.44 1 0 3 1 3.215
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#> Hornet Sportabout 3.15 17.02 0 0 3 2 3.440

One thing to be aware of is that this operation does not preserve column ordering.

Generally speaking, code that relies on columns being in a specific order is fragile - it breaks
easily. If possible, you should try to write your code in another way that’s robust to column
reordering. I’ve done that here when removing the wt column by looking up the column index
as part of my code, rather than assuming it will always be the fourth column.

7.6.2 dplyr::mutate()

The function from {dplyr} to create new columns is mutate(). Let’s create another column
that has the car’s weight in kilogrammes rather than tonnes.

cars_renamed <- cars_renamed %>%
mutate(weight_kg = weight * 1000)

cars_renamed %>%
select(miles_per_gallon, cylinders, displacement, weight, weight_kg) %>%
head(n = 5)

#> miles_per_gallon cylinders displacement weight weight_kg
#> Mazda RX4 21.0 6 160 2.620 2620
#> Mazda RX4 Wag 21.0 6 160 2.875 2875
#> Datsun 710 22.8 4 108 2.320 2320
#> Hornet 4 Drive 21.4 6 258 3.215 3215
#> Hornet Sportabout 18.7 8 360 3.440 3440

You can also create new columns that are functions of multiple other columns.

cars_renamed <- cars_renamed %>%
mutate(cylinder_adjusted_mpg = miles_per_gallon / cylinders)

7.6.3 rownames_to_column()

One useful example of adding an additional row to a data frame is to convert its row names
to a column of the data fame.

cars %>%
mutate(model = rownames(cars_renamed)) %>%
select(mpg, cyl, model) %>%
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head(n = 5)
#> mpg cyl model
#> Mazda RX4 21.0 6 Mazda RX4
#> Mazda RX4 Wag 21.0 6 Mazda RX4 Wag
#> Datsun 710 22.8 4 Datsun 710
#> Hornet 4 Drive 21.4 6 Hornet 4 Drive
#> Hornet Sportabout 18.7 8 Hornet Sportabout

There’s a neat function called rownames_to_column() in the {tibble} package. This will
add the row names as the first column and remove the row names all in one step.

cars %>%
tibble::rownames_to_column(var = "model") %>%
head(n = 5)

#> model mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> 2 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> 3 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#> 4 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> 5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

7.6.4 rowids_to_column()

Another function from {tibble} adds the row id of each observation as a new column. This
is often useful when ordering or combining tables.

cars %>%
tibble::rowid_to_column(var = "row_id") %>%
head(n = 5)

#> row_id mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> 2 2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> 3 3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#> 4 4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> 5 5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
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7.7 Summaries

The summarise() function allows you to collapse a data frame into a single row, which using
a summary statistic of your choosing.

We can calculate the average bill length of all penguins in a single summarise() function call.

summarise(penguins, average_bill_length_mm = mean(bill_length_mm))
#> # A tibble: 1 x 1
#> average_bill_length_mm
#> <dbl>
#> 1 NA

Since we have missing values, we might instead want to calculate the mean of the recorded
values.

summarise(penguins, average_bill_length_mm = mean(bill_length_mm, na.rm = TRUE))
#> # A tibble: 1 x 1
#> average_bill_length_mm
#> <dbl>
#> 1 43.9

We can also use summarise() to gather multiple summaries in a single data frame.

bill_length_mm_summary <- penguins %>%
summarise(

mean = mean(bill_length_mm, na.rm = TRUE),
median = median(bill_length_mm, na.rm = TRUE),
min = max(bill_length_mm, na.rm = TRUE),
q_0 = min(bill_length_mm, na.rm = TRUE),
q_1 = quantile(bill_length_mm, prob = 0.25, na.rm = TRUE),
q_2 = median(bill_length_mm, na.rm = TRUE),
q_3 = quantile(bill_length_mm, prob = 0.75, na.rm = TRUE),
q_4 = max(bill_length_mm, na.rm = TRUE))

bill_length_mm_summary
#> # A tibble: 1 x 8
#> mean median min q_0 q_1 q_2 q_3 q_4
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 43.9 44.4 59.6 32.1 39.2 44.4 48.5 59.6

In all, this isn’t overly exciting. You might rightly wonder why you’d want to use summarise()
when we could just use the simpler base R calls directly.
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One benefit of summarise() is that it provides certainty that the obejct returned will be of
a certain class (a tibble) no matter what summary function is used. However, summarise()
really comes into its own when you want to apply these summaries to distinct subgroups of
the data.

7.8 Grouped Operations

The real benefit of summarise() comes from its combination with group_by(). This allows to
you calculate the same summary statistics for each level of a factor with only one additional
line of code.

Here we’re re-calculating the same set of summary statistics we just found for all penguins,
but for each individual species.

penguins %>%
group_by(species) %>%
summarise(

mean = mean(bill_length_mm, na.rm = TRUE),
median = median(bill_length_mm, na.rm = TRUE),
min = max(bill_length_mm, na.rm = TRUE),
q_0 = min(bill_length_mm, na.rm = TRUE),
q_1 = quantile(bill_length_mm, prob = 0.25, na.rm = TRUE),
q_2 = median(bill_length_mm, na.rm = TRUE),
q_3 = quantile(bill_length_mm, prob = 0.25, na.rm = TRUE),
q_4 = max(bill_length_mm, na.rm = TRUE))

#> # A tibble: 3 x 9
#> species mean median min q_0 q_1 q_2 q_3 q_4
#> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Adelie 38.8 38.8 46 32.1 36.8 38.8 36.8 46
#> 2 Chinstrap 48.8 49.6 58 40.9 46.3 49.6 46.3 58
#> 3 Gentoo 47.5 47.3 59.6 40.9 45.3 47.3 45.3 59.6

You can group by multiple factors to calculate summaries for each distinct combination of
levels within your data set. Here we group by combinations of species and the island to which
they belong.

penguin_summary_stats <- penguins %>%
group_by(species, island) %>%
summarise(

mean = mean(bill_length_mm, na.rm = TRUE),
median = median(bill_length_mm, na.rm = TRUE),
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min = max(bill_length_mm, na.rm = TRUE),
q_0 = min(bill_length_mm, na.rm = TRUE),
q_1 = quantile(bill_length_mm, prob = 0.25, na.rm = TRUE),
q_2 = median(bill_length_mm, na.rm = TRUE),
q_3 = quantile(bill_length_mm, prob = 0.25, na.rm = TRUE),
q_4 = max(bill_length_mm, na.rm = TRUE))

#> `summarise()` has grouped output by 'species'. You can override using the
#> `.groups` argument.

penguin_summary_stats
#> # A tibble: 5 x 10
#> # Groups: species [3]
#> species island mean median min q_0 q_1 q_2 q_3 q_4
#> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Adelie Biscoe 39.0 38.7 45.6 34.5 37.7 38.7 37.7 45.6
#> 2 Adelie Dream 38.5 38.6 44.1 32.1 36.8 38.6 36.8 44.1
#> 3 Adelie Torgersen 39.0 38.9 46 33.5 36.7 38.9 36.7 46
#> 4 Chinstrap Dream 48.8 49.6 58 40.9 46.3 49.6 46.3 58
#> 5 Gentoo Biscoe 47.5 47.3 59.6 40.9 45.3 47.3 45.3 59.6

7.8.1 Ungrouping

By default, each call to summarise() will undo one level of grouping. This means that our
previous result was still grouped by species. We can see this in the tibble output above or by
examining the structure of the returned data frame. This tells us that this is an S3 object of
class grouped_df, which inherits its properties from a tbl_df, tbl, and data.frame objects.

class(penguin_summary_stats)
#> [1] "grouped_df" "tbl_df" "tbl" "data.frame"

Since we have grouped by two variables, {dplyr} expects us to use two summary() function
calls before it will return a data frame (or tibble) that is not grouped. One way to satisfy this
is to apply a second summary at the species level of grouping.

penguin_summary_stats %>%
summarise_all(mean, na.rm = TRUE)

#> # A tibble: 3 x 10
#> species island mean median min q_0 q_1 q_2 q_3 q_4
#> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Adelie NA 38.8 38.7 45.2 33.4 37.0 38.7 37.0 45.2

124



#> 2 Chinstrap NA 48.8 49.6 58 40.9 46.3 49.6 46.3 58
#> 3 Gentoo NA 47.5 47.3 59.6 40.9 45.3 47.3 45.3 59.6

However, we won’t always want to do apply another summary. In that case, we can undo
the grouping using ungroup(). Remembering to ungroup is a common mistake and cause of
confusion when working with multiple-group summaries.

ungroup(penguin_summary_stats)
#> # A tibble: 5 x 10
#> species island mean median min q_0 q_1 q_2 q_3 q_4
#> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Adelie Biscoe 39.0 38.7 45.6 34.5 37.7 38.7 37.7 45.6
#> 2 Adelie Dream 38.5 38.6 44.1 32.1 36.8 38.6 36.8 44.1
#> 3 Adelie Torgersen 39.0 38.9 46 33.5 36.7 38.9 36.7 46
#> 4 Chinstrap Dream 48.8 49.6 58 40.9 46.3 49.6 46.3 58
#> 5 Gentoo Biscoe 47.5 47.3 59.6 40.9 45.3 47.3 45.3 59.6

There’s an alternative method to achieve the same thing in a single step when using {dplyr}
versions 1.0.0 and above. This is to to set the .by parameter of the summarise() function call,
which determines the grouping that should be applied to the original data frame, just for this
one operation.

#> # A tibble: 3 x 2
#> island mean_bill_length_mm
#> <fct> <dbl>
#> 1 Torgersen 39.0
#> 2 Biscoe 45.3
#> 3 Dream 44.2

The .by argument applies to a single operation. This means that the result of the summarise()
call will always be an ungrouped tibble, regardless of the number of grouping columns.

#> # A tibble: 5 x 3
#> island species mean_bill_length_mm
#> <fct> <fct> <dbl>
#> 1 Torgersen Adelie 39.0
#> 2 Biscoe Adelie 39.0
#> 3 Dream Adelie 38.5
#> 4 Biscoe Gentoo 47.5
#> 5 Dream Chinstrap 48.8

See ?dplyr_by for more information on using the .by argument with summarise() and other
{dplyr} verbs.
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7.9 Reordering Factors

R stored factors as integer values, which it then maps to a set of labels. Only factor levels that
appear in your data will be assigned a coded integer value and the mapping between factor
levels and integers will depend on the order that the labels appear in your data.

This can be annoying, particularly when your factor levels relate to properties that aren’t
numerical but do have an inherent ordering to them. In the example below, we have the
t-shirt size of twelve people.

tshirts <- tibble::tibble(
id = 1:12,
size = as.factor(c("L", NA, "M", "S", "XS", "M", "XXL", "L", "XS", "M", "L", "S"))

)

levels(tshirts$size)
#> [1] "L" "M" "S" "XS" "XXL"

Irritatingly, the sizes aren’t in order and extra large isn’t included because it’s not included in
this particular sample. This leads to awkward looking summary tables and plots.

tshirts %>% group_by(size) %>% summarise(count = n())
#> # A tibble: 6 x 2
#> size count
#> <fct> <int>
#> 1 L 3
#> 2 M 3
#> 3 S 2
#> 4 XS 2
#> 5 XXL 1
#> 6 <NA> 1

We can fix this by creating a new variable with the factors explicitly coded in the correct order.
We also need to specify that we should not drop empty groups as part of group_by().

tidy_tshirt_levels <- c("XS", "S", "M", "L", "XL", "XXL", NA)

tshirts %>%
mutate(size_tidy = factor(size, levels = tidy_tshirt_levels)) %>%
group_by(size_tidy, .drop = FALSE ) %>%
summarise(count = n())

#> # A tibble: 7 x 2
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#> size_tidy count
#> <fct> <int>
#> 1 XS 2
#> 2 S 2
#> 3 M 3
#> 4 L 3
#> 5 XL 0
#> 6 XXL 1
#> # i 1 more row

7.10 Be Aware: Factors

As we have seen a little already, categorical variables can cause issues when wrangling and
presenting data in R. All of these problems are solvable using base R techniques but the
{forcats} package provides tools for the most common of these problems. This includes
functions for changing the order of factor levels or the values with which they are associated.

Some examples functions from the package include:

• fct_reorder(): Reordering a factor by another variable.
• fct_infreq(): Reordering a factor by the frequency of values.
• fct_relevel(): Changing the order of a factor by hand.
• fct_lump(): Collapsing the least/most frequent values of a factor into “other”.

Examples of each of these can be found in the forcats vignette or the factors chapter of R for
data science.

7.11 Be Aware: Strings

Working with and analysing text data is a skill unto itself. However, it is useful to be able to
do some basic manipulation of character strings programatically.

Because R was developed as a statistical programming language, it is well suited to the compu-
tational and modelling aspects of working with text data but the base R string manipulation
functions can be a bit unwieldy at times.

The {stringr} package aims to combat this by providing useful helper functions for a range
of text management problems. Even when not analysing text data these can be useful, such
as when removing prefixes from many column names.
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Suppose we wanted to keep only the text following an underscore in these column names. We
could do that by using a regular expression to extract lower-case or upper-case letters which
follow an underscore.

head(poorly_named_df)
#> # A tibble: 6 x 11
#> observation_id V1_A V2_B V3_C V4_D V5_E V6_F V7_G V8_H
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 -1.33 -0.147 -0.321 0.557 0.281 0.630 0.763 -0.167
#> 2 2 1.60 0.377 0.675 -0.934 -0.334 -0.661 2.33 -1.12
#> 3 3 0.904 -0.537 0.558 0.508 -1.65 0.0267 -1.49 0.197
#> 4 4 0.0468 0.738 -0.708 -0.662 0.241 0.737 -1.66 0.921
#> 5 5 0.846 0.0883 0.686 -1.37 -0.684 -1.63 0.659 -0.461
#> 6 6 -0.499 -3.10 1.19 0.839 0.118 -0.396 -0.737 1.18
#> # i 2 more variables: V9_I <dbl>, V10_J <dbl>

stringr::str_extract(names(poorly_named_df), pattern = "(?<=_)([a-zA-Z]+)")
#> [1] "id" "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"

Alternatively, can avoid using regular expressions. We can use stringr::str_split() to
divide each column name at the underscore and keep only the second part of each string.

# split column names at underscores and inspect structure of resuting object
split_strings <- stringr::str_split(names(poorly_named_df), pattern = "_")
str(split_strings)
#> List of 11
#> $ : chr [1:2] "observation" "id"
#> $ : chr [1:2] "V1" "A"
#> $ : chr [1:2] "V2" "B"
#> $ : chr [1:2] "V3" "C"
#> $ : chr [1:2] "V4" "D"
#> $ : chr [1:2] "V5" "E"
#> $ : chr [1:2] "V6" "F"
#> $ : chr [1:2] "V7" "G"
#> $ : chr [1:2] "V8" "H"
#> $ : chr [1:2] "V9" "I"
#> $ : chr [1:2] "V10" "J"

# keep only the second element of each character vector in the list
purrr::map_chr(split_strings, function(x){x[2]})
#> [1] "id" "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"
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Unless you plan to work extensively with text data, I would recommend that you look up such
string manipulations as you need them. The strings section of R for Data Science is a useful
starting point.

7.12 Be Aware: Date-Times

Remember all the fuss we made about storing dates in the ISO standard format? That was
because dates and times are complicated enough to work on without adding extra ambiguity.

YYYY − MM − DD

Dates, times and time intervals have to reconcile two factors: the physical orbit of the Earth
around the Sun and the social and geopolitical mechanisms that determine how we measure
and record the passing of time. This makes the history of date and time records fascinating
but also make working with this type of data complicated.

Moving from larger to smaller time spans: leap years alter the number of days in a year,
months are of variable length (with February’s length changing from year to year). If your
data are measured in a place that uses daylight saving, then one day a year will be 23 hours
long and another will be 25 hours long. To make things worse, the dates and the hour at which
the clocks change are not uniform across countries, which might span multiple time zones and
those time-zone boundaries can shift over time.

Even at the level of minutes and seconds we aren’t safe - since the Earth’s orbit is gradually
slowing down and a leap second is added approximately every 21 months. Nor are things any
better when looking at longer time scales or across cultures, where we might have to account for
different calendars: months are added removed and altered over time, other calendar systems
still take different approaches to measuring time and using different units and origin points.

With all of these issues you have to be very careful when working with date and time data.
Functions to help you with this can be found in the {lubridate} package, with examples in
the dates and times chapter of R for data science.

7.13 Be Aware: Relational Data

When the data you need are stored across two or more data frames you need to be able to
cross-reference those and match up values for observational unit. This sort of data is know as
relational data, and is used extensively in data science.

The variables you use to match observational units across data frames are known as keys.
The primary key belongs to the first table and the foreign key belongs to the secondary table.
There are various ways to join these data frames, depending on if you want to retain.
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7.13.0.1 Join types

You might want to keep only observational units that have key variables values in both data
frames, this is known as an inner join.

Figure 7.1: Inner join diagram. Source: R for Data Science

You might instead want to keep all units from the primary table but pad with NAs where there
is not a corresponding foreign key in the second table. This results in an (outer) left-join.

Conversely, you might keep all units from the second table but pad with NAs where there is
not a corresponding foreign key in the primary table. This is imaginatively named an (outer)
right-join.

In the (outer) full join, all observational units from either table are retained and all missing
values are padded with NAs.

Things get more complicated when keys don’t uniquely identify observational units in either
one or both of the tables. I’d recommend you start exploring these ideas with the relational
data chapter of R for Data Science.

7.13.0.2 Why and where to learn more

Working with relational data is essential to getting any data science up and running out in the
wilds of reality. This is because businesses and companies don’t store all of their data in a huge
single csv file. For one this isn’t very efficient, because most cells would be empty. Secondly,
it’s not a very secure approach, since you can’t grant partial access to the data. That’s why
information is usually stored in many data frames (more generically known as tables) within
one or more databases.

These data silos are created, maintained, accessed and destroyed using a relational data base
management system. These management systems use code to manage and access the stored
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Figure 7.2: Diagram for left, right and outer joins. Source: R for Data Science
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data, just like we have seen in the dplyr commands above. You might well have heard of the
SQL programming language (and its many variants), which is a popular language for data
base management and is the inspiration for the dplyr package and verbs.

If you’d like to learn more then there are many excellent introductory SQL books and courses,
I’d recommend picking one that focuses on data analysis or data science unless you really want
to dig into efficient storage and querying of databases.

7.14 Wrapping up

We have:

• Learned how to wrangle tabular data in R with {dplyr}

• Met the idea of relational data and {dplyr}’s relationship to SQL

• Become aware of some tricky data types and packages that can help.

7.15 Session Information

R version 4.3.1 (2023-06-16)

Platform: x86_64-apple-darwin20 (64-bit)

locale: en_US.UTF-8||en_US.UTF-8||en_US.UTF-8||C||en_US.UTF-8||en_US.UTF-8

attached base packages: stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: dplyr(v.1.1.4) and palmerpenguins(v.0.1.1)

loaded via a namespace (and not attached): vctrs(v.0.6.5), cli(v.3.6.2), knitr(v.1.45),
rlang(v.1.1.2), xfun(v.0.41), stringi(v.1.8.3), purrr(v.1.0.2), generics(v.0.1.3), jsonlite(v.1.8.8),
glue(v.1.6.2), htmltools(v.0.5.7), fansi(v.1.0.6), rmarkdown(v.2.25), pander(v.0.6.5), evalu-
ate(v.0.23), tibble(v.3.2.1), fastmap(v.1.1.1), yaml(v.2.3.8), lifecycle(v.1.0.4), stringr(v.1.5.1),
compiler(v.4.3.1), Rcpp(v.1.0.11), pkgconfig(v.2.0.3), rstudioapi(v.0.15.0), digest(v.0.6.33),
R6(v.2.5.1), tidyselect(v.1.2.0), utf8(v.1.2.4), pillar(v.1.9.0), magrittr(v.2.0.3), tools(v.4.3.1)
and withr(v.2.5.2)
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8 Exploratory Data Analysis

8.1 Introduction

Exploratory data analysis is an essential stage in any data science project. It allows you to
become familiar with the data you are working with while also to identify potential strategies
for progressing the project and flagging any areas of concern.

In this chapter we will look at three different perspectives on exploratory data analysis: its
purpose for you as a data scientist, its purpose for the broader team working on the project
and finally its purpose for the project itself.

8.2 Get to know your data

Let’s first focus on an exploratory data analysis from our own point of view, as data scientists.

Exploratory data analysis (or EDA) is a process of examining a data set to understand its
overall structure, contents, and the relationships between the variables it contains. EDA is
an iterative process that’s often done before building a model or making other data-driven
decisions within a data science project.

Exploratory Data Analysis: quick and simple exerpts, summaries and plots to
better understand a data set.

One key aspect of EDA is generating quick and simple summaries and plots of the data.
These plots and summary statistics can help to quickly understand the distribution of and
relationships between the recorded variables. Additionally, during an exploratory analysis you
will familiarise yourself with the structure of the data you’re working with and how that data
was collected.

library("ggplot2")
library("GGally")

colours <- colorspace::adjust_transparency(
col = PrettyCols::prettycols(name = "Fun", n = 3),
alpha = 0.6)
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ggpairs(iris,mapping = aes(col = Species)) +
scale_colour_manual(values = colours) +
scale_fill_manual(values = colours) +
theme_minimal() +
theme(axis.text = element_text(size = 6))

Corr: −0.118
    setosa: 0.743***
versicolor: 0.526***
 virginica: 0.457***

Corr: 0.872***
    setosa: 0.267.  

versicolor: 0.754***
 virginica: 0.864***

Corr: −0.428***
    setosa: 0.178   

versicolor: 0.561***
 virginica: 0.401** 

Corr: 0.818***
    setosa: 0.278.  

versicolor: 0.546***
 virginica: 0.281*  

Corr: −0.366***
    setosa: 0.233   

versicolor: 0.664***
 virginica: 0.538***

Corr: 0.963***
    setosa: 0.332*  
versicolor: 0.787***
 virginica: 0.322*  
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Figure 8.1: Investigating marginal and pairwise relationships in the Iris dataset.

Since EDA is an initial and iterative process, it’s rare that any component of the analysis will
be put into production. Instead, the goal is to get a general understanding of the data that
can inform the next steps of the analysis.

In terms of workflow, this means that using one or more notebooks is often an effective way
of organising your work during an exploratory analysis. This allows for rapid iteration and
experimentation, while also providing a level of reproducibility and documentation. Since
notebooks allow you to combine code, plots, tables and text in a single document, this makes
it easy to share your initial findings with stakeholders and project managers.

8.3 Start a conversation

An effective EDA sets a precedent for open communication with the stakeholder
and project manager.
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We’ve seen the benefits of an EDA for you as a data scientist, but this isn’t the only perspec-
tive.

One key benefit of an EDA is that it can kick-start your communication with subject matter
experts and project managers. You can build rapport and trust early in a project’s life cycle
by sharing your preliminary findings with these stakeholders . This can lead to a deeper un-
derstanding of both the available data and the problem being addressed for everyone involved.
If done well, it also starts to build trust in your work before you even begin the modelling
stage of a project.

8.3.1 Communicating with specialists

Sharing an exploratory analysis will inevitably require a time investment. The graphics, tables,
and summaries you produce need to be presented to a higher standard and explained in a way
that is clear to a non-specialist. However, this time investment will often pay dividends because
of the additional contextual knowledge that the domain-expert can provide. They have a deep
understanding of the business or technical domain surrounding the problem. This can provide
important insights that aren’t in the data itself, but which are vital to the project’s success.

As an example, these stakeholder conversations often reveal important features in the data
generating or measurement process that should be accounted for when modelling. These
details are usually left out of the data documentation because they would be immediately
obvious to any specialist in that field.

8.3.2 Communicating with project manager

An EDA can sometimes allow us to identify cases where the strength of signal within the avail-
able data is clearly insufficient to answer the question of interest. By clearly communicating
this to the project manager, the project can be postponed while different, better quality or
simply more data are collected. It’s important to note that this data collection is not trivial
and can have a high cost in terms of both time and capital. It might be that collecting the
data needed to answer a question will cost more than we’re likely to gain from knowing that
answer. Whether the project is postponed or cancelled, this constitutes a successful outcome
for the project; the aim is to to produce insight or profit - not to fit models for their own
sake.

8.4 Scope Your Project

EDA is an initial assessment of whether the available data measure the correct
values, in sufficient quality and quantity, to answer a particular question.
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A third view on EDA is as an initial assessment of whether the available data measure the
correct values, with sufficient quality and quantity, to answer a particular question. In order
for EDA to be successful, it’s important to take a few key steps.

First, it’s important to formulate a specific question of interest or line of investigation and
agree on it with the stakeholder. By having a clear question in mind, it will be easier to focus
the analysis and identify whether the data at hand can answer it.

Next, it’s important to make a record (if one doesn’t already exist) of how the data were
collected, by whom it was collected, what each recorded variable represents and the units in
which they are recorded. This meta-data is often known as a data sheet or data dictionary.
Having this information in written form is crucial when adding a new collaborator to a project,
so that they can understand the data generating and measurement processes, and are aware of
the quality and accuracy of the recorded values.The Open Science Foundation give a concise
description of the meta-data you might list in a data dictionary.

8.5 Investigate Your Data

EDA is an opportunitiy to quantify data completeness and investigate the possi-
bility of informative missingness.

In addition, it’s essential to investigate and document the structure, precision, completeness
and quantity of data available. This includes assessing the degree of measurement noise or
misclassification in the data, looking for clear linear or non-linear dependencies between any
of the variables, and identifying if any data are missing or if there’s any structure to this
missingness. Other data features to be aware of are the presence of any censoring or whether
some values tend to be missing together.

Furthermore, a more advanced EDA might include a simulation study to estimate the amount
of data needed to detect the smallest meaningful effect. This is more in-depth than a typical
EDA but if you suspect that the signals within your data are weak relative to measurement
noise, can help to demonstrate the limitations of the current line of enquiry with the informa-
tion that is currently available.

8.6 What is not EDA?

It’s important to understand that an exploratory data analysis is not the same thing as mod-
elling. In particular is not the construction of your baseline model, which is sometimes called
initial data analysis. Though it might inform the choice of baseline model, EDA is usually
not model based. In an EDA, simple plots and summaries are used to identify patterns in the
data that inform how you approach the rest of the project.
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Some degree of statistical rigour can be added to EDA through the use of non-parametric
techniques; methods like rolling averages, smoothing or partitioning can to help identify trends
or patterns while making minimal assumptions about the data generating process.

library(tidyverse)
library(ismev)
library(cowplot)

data("dowjones", package = "ismev")

theme_dow_jones <- theme_minimal() +
theme(

axis.text = element_text(size = 10),
axis.title = element_text(size = 9, face = "bold", hjust = 0.98, vjust = 2),
plot.title = element_text(size = 15, hjust = 0.02),
plot.subtitle = element_text(size = 12, hjust = 0.02)

)

p1 <- dowjones %>%
mutate(index_change = Index - lag(Index)) %>%
filter(!is.na(index_change)) %>%
ggplot(aes(x = Date, y = index_change)) +
geom_point(col = rgb(0,0,0,0.2), size = 2) +
geom_smooth(col = "darkorange", lwd = 1.5) +
geom_vline(xintercept = as.Date("1998-06-01")) +
ggtitle("Daily change in Dow Jones Index", "with smoothed estimate of mean change") +
ylab("") +
theme_dow_jones

p2 <- dowjones %>%
mutate(index_change = Index - lag(Index)) %>%
filter(!is.na(index_change)) %>%
ggplot(aes(x = Date, y = index_change)) +
geom_point(col = rgb(0, 0, 0, 0.2), size = 2) +
geom_smooth(

col = "darkorange",
fill = colorspace::adjust_transparency("darkorange", 0.05),
lwd = 1.5) +

geom_vline(xintercept = as.Date("1998-06-01")) +
ylab("") +
coord_cartesian(ylim = c(-2, 12)) +
theme_dow_jones
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plot_grid(p1,p2)
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Figure 8.2: Daily change in Dow Jones Index with smoothed estimate of mean and 95% confi-
dence interval.

knitr::kable(
x = dowjones %>%
mutate(index_change = Index - lag(Index)) %>%
mutate(after_june_98 = Date > as.Date("1998-06-01")) %>%
group_by(after_june_98) %>%
summarise(

mean = mean(index_change, na.rm = TRUE),
sd = sd(index_change, na.rm = TRUE)),

caption = "Mean and standard deviation of daily change in Dow Jones Index, before and after 1st of June 1998."
)

Table 8.1: Mean and standard deviation of daily change in Dow Jones Index, before and after
1st of June 1998.

after_june_98 mean sd
FALSE 5.916798 65.19093
TRUE 3.972929 119.56067
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after_june_98 mean sd

Though the assumptions in an EDA are often minimal it can help to make them explicit. For
example, in this plot a moving averages is shown with a confidence band, but the construction
of this band makes the implicit assumption that, at least locally, our observations have the
same distribution and so are exchangeable.

Finally, EDA is not a prescriptive process. While I have given a lot of suggestions on what
you might usually want to consider, there is no correct way to go about an EDA because it
is so heavily dependent on the particular dataset, its interpretation and the task you want to
achieve with it. This is one of the parts of data science that make it a craft that you hone
with experience, rather than an algorithmic process. When you work in a particular area for a
long time you develop domain-specific knowledge of common data quirks, which may or may
not translate to other applications.

Now that we have a better idea of what is and what is not EDA, let’s talk about the issue
that an EDA tries to resolve and the other issues that it generates.

8.7 Issue: Forking Paths

In any data science project you have to make a sequence of very many decisions, each with
many potential options. It is almost impossible to anticipate all of the decisions you will have
to make ahead of time and even more difficult do decide how to proceed with each decision a
priori.
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Focusing in on only one small part of the data science process, we might consider picking a null
or baseline model that we will then try and improve on. Should that null model make constant
predictions, incorporate a simple linear trend or is something more flexible obviously needed?
Do you have the option to try all of these or are you working under time constraints? Is there
any domain knowledge that rules some of these null models out on contextual grounds?

An EDA lets you narrow down your options by looking at your data and helps you to decide
what might be reasonable modelling approaches.
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The problem that sneaks in here is data leakage. Formally this is where training data is
included in test set but this sort of information leak can happen informally too. Usually
this is because you’ve seen the data you’re trying to model or predict and then selected your
modelling approach based on that information.

Standard, frequentist statistical methods for estimation and testing assume no “peeking” of
this type has occurred. If we use these methods without acknowledging that we have already
observed our data then we will artificially inflate the significance of our findings. For example,
we might be comparing two models: the first of which makes constant predictions with regard
to a predictor, while the second includes a linear trend. We will of course use a statistical test
to confirm that what we are seeing is unlikely by chance. However, we must be aware this test
was only performed because we had previously examined at the data and noticed what looked
to be a trend.

Similar issues arise in Bayesian approaches, particularly when constructing or eliciting prior
distributions for our model parameters. One nice thing that we can do in the Bayesian setting
is to simulate data from the prior predictive distribution and then get an expert to check that
these datasets seem seem reasonable. However, it is often the case this expert is also the
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person who collected the data we will soon be modelling. It’s very difficult for them to ignore
what they have seen, which leads to similar, subtle leakage problems. (For further discussion
see the relevant sections of Gelman et al. (2020) or Betancourt (2020))

8.8 Correction Methods

There are various methods or corrections that we can apply during our testing and estimation
procedures to ensure that our error rates or confidence intervals account for our previous
“peeking” during EDA.

Examples of these corrections have been developed across many fields of statistics. In medi-
cal statistics we have approaches like the Bonferroni correction, to account for carrying out
multiple hypothesis tests. In the change-point literature there are techniques for estimating
a change location given that a change has been detected somewhere in a time series. While
in the extreme value literature there are methods to estimate the required level of protection
against rare events, given that the analysis was triggered by the current protections having
been compromised.

# Simulate data
date <- seq.Date(
from = as.Date("2018-03-01"),
to = as.Date("2022-05-03"),
by = "day")

sim_size <- length(date)

set.seed(1234)
surge_height <- rnorm(n = sim_size) + c(rep(-3, sim_size - 1), 3)
surface_height <- rnorm(n = sim_size) + rep(x = c(-5,-3), times = c(1234, sim_size - 1234))

waves <- tibble::tibble(date, surge_height, surface_height)

# Extreme Value Plot
p3 <- waves %>%
mutate(is_extreme = surge_height > 1) %>%
ggplot(aes(x = date, y = surge_height)) +
geom_point(aes(color = is_extreme), show.legend = FALSE) +
scale_color_manual(values = c("FALSE" = "grey40", "TRUE" = "darkorange")) +
ylab("Wave surge height (m)") +
theme_minimal() +
theme(
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axis.text = element_text(size = 10),
axis.title = element_text(size = 9, face = "bold", hjust = 0.98, vjust = 2),
plot.title = element_text(size = 15, hjust = 0.02),
plot.subtitle = element_text(size = 12, hjust = 0.02)

)

# Changepoint Plot
p4 <- waves %>%
ggplot(aes(x = date, y = surface_height)) +
geom_point(color = "grey40") +
geom_vline(xintercept = as.Date("2021-07-17"),

colour = "darkorange",
linewidth = 1.2) +

ylab("Sea surface height (m)") +
theme_minimal() +

theme(
axis.text = element_text(size = 10),
axis.title = element_text(size = 9, face = "bold", hjust = 0.98, vjust = 2),
plot.title = element_text(size = 15, hjust = 0.02),
plot.subtitle = element_text(size = 12, hjust = 0.02)

)

plot_grid(p3,p4,nrow = 2, ncol = 1)
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Figure 8.3: Example sea-height datasets where an analysis has been triggered by an extreme
value (above) or a visually identified change in mean (below).

All of these corrections require us to make assumptions about the nature of the peeking. They
are either very specific about the process that has occurred, or else are very pessimistic about
how much information has been leaked. Developing such corrections to account for EDA isn’t
really possible, given its adaptive and non-prescriptive nature.

In addition to being either highly specific or pessimistic, these corrections can also be hard to
derive and complicated to implement. This is why in settings where the power of tests or level
of estimation is critically important, the entire analysis is pre-registered. In clinical trials, for
example, every step of the analysis is specified before any data are collected. In data science
this rigorous approach is rarely taken.

As statistically trained data scientists, it is important for us to remain humble about our
potential findings and to suggest follow up studies to confirm the presence of any relationships
we do find.

8.9 Learning More

In this chapter we have acknowledged that exploratory analyses are an important part of the
data science workflow; this is true not only for us as data scientists, but also for the other
people who are involved with our projects. We’ve also seen that an exploratory analysis can
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help to guide the progression of our projects, but that in doing so we must take care to prevent
and acknowledge the risk of data leakage.

If you want to explore this topic further, it can be quite challenging. Examples of good, ex-
ploratory data analyses can be difficult to come by because, unlike the papers and technical
reports that they precede, exploratory analyses are not often made publicly available. Addi-
tionally, they are often kept out of public repositories because they are not as “polished” as
the rest of the project. Personally, I think this is a shame and the culture on this is slowly
changing.

For now, your best approach to learning about what makes a good exploratory analysis is to
do lots of your own and to talk to you colleagues about their approaches. There are lots of
list-articles out there claiming to give you a comprehensive list of steps for any exploratory
analysis. These can be good for inspiration, but I strongly advise you against falling into the
trap of treating these as prescriptive or foolproof.

Despite the name of the chapter, Roger Peng’s EDA check-list gives an excellent worked ex-
ample of an exploratory analysis in R. In discussion article “Exploratory Data Analysis for
Complex Models”, Andrew Gelman makes a more abstract discussion of both exploratory anal-
yses (which happen before modelling) and confirmatory analyses (which happen afterwards).
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9 Data Visualisation

9.1 Introduction

9.1.1 More than a pretty picture

Data visualisation is an integral part of your work as a data scientist.

Figure 9.1: Book jacket showing the effect of global temperatures rising. A series of vertical
stripes represent the annual global average temperature, progressing from blue on
the left to red on the right.

You’ll use visualisations to rapidly explore new data sets, to understand their structure and
to establish which types of model might be suitable for the task at hand. Visualisation is also
vital during model evaluation and when check the validity of the assumptions on which that
model is based. These are relatively technical uses of visualisation, but graphics have a much
broader role within your work as an effective data scientist.

When well designed, plots, tables and animations can tell compelling stories that were once
trapped within your data. They can also intuitively communicate the strength of evidence for
your findings and draw attention to the most salient parts your argument.

Data visualisation is an amalgamation of science, statistics, graphic design and storytelling.
It’s multi-disciplinary nature means that we have to draw on all of our skills to ensure success.
While there are certainly many ways to go wrong when visualising data, there are many more
ways to get it right.

This chapter won’t be a a step-by-step tutorial of how to visualise any specific type of data.
Nor will it be a line-up of visualisations gone wrong. Instead, I hope to pose some questions
that’ll get you thinking critically about exactly what you want from each graphic that you
produce.

There are (at least) five things that you should think about when producing any sort of data
visualisation. We will consider each of these in turn.
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9.2 Your Tools �

9.2.1 Picking the right tool for the job

When you think of data visualisation, you might immediately think of impressive animations
or complex, interactive dashboards that allow users to explore relationships within the data
for themselves.

Such tools are no doubt impressive but they are by no means necessary for an effective data
visualisation. In many cases there is no technology is needed at all. The history of data
visualisation vastly pre-dates that of computers and some of the most effective visualisations
remain analogue creations.

Figure 9.2: Coffee consumption, visualised. Jaime Serra Palou.

This visualisation of a year’s coffee consumption is an ideal example. Displaying the number
of cups of coffee in a bar chart or line graph would have been a more accurate way to collect
and display this data, but that wouldn’t have the same resonance or impact and it certainly
wouldn’t have been as memorable.
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9.2.2 Analogue or Digital

9.2.2.1 Analogue Data Viz

Here we have another example of an analogue data visualisation that is created as part of
data collection. Each member of the department is invited to place a Lego brick on a grid
to indicate how much caffeine they have consumed and how much sleep they have had. The
beauty of using Lego bricks here is that they are stackable and so create a bar plot over two
dimensions.

Figure 9.3: Caffeination vs sleep, shown in lego. Elsie Lee-Robbins

A third example can be found next to the tills in many supermarkets. Each customer is given
a token as they pay for their goods. They can then drop this token into one of three large
perspex containers as they leave the shop, each representing a different charity. At the end
of the month £10,000 is split between the charities in proportion to the number of tokens.
Because the containers are made from a transparent material you can see how the tokens are
distributed, giving a visualisation of the level of support for each of the charities.
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There are many other way of constructing a physical, analogue visualisation of your data and
this doesn’t need to be done as part of the data collection process. The simplest and perhaps
most obvious most obvious is to create a plot of tabular data using a pen and paper.

9.2.2.2 Digital Data Viz

When it comes to digital tools for data visualisation you have a plethora of options. The most
similar to pen-and-paper plotting is to draw your visualisations using a Photoshop, or an open
source equivalent like Inkscape. The benefit here is that if you misplace a line or dot you can
correct this small error without having to start all over again.

There are then more data-focused tools that have point-and-click interfaces. These are things
like Excel’s chart tools, or specialist visualisation software like Tableau. These are great
because they scale with the quantity of data, so that you can plot larger amounts of raw data
values that you wouldn’t have the time or patience to do by hand - whether that’s in an
analogue or digital format.

Analogue and point-and-click approaches to visualisation have the shared limitation of not
being reproducible, at least not without extensive documentation explaining how the graphic
was created.

Using code to create your visualisations can resolve this reproducibility issue, and includes
visualisation as a part of your larger, reproducible workflow for data science. Scripted visuali-
sations also scale easily to large data sets and are easy to alter if any changes are required. The
downside here is that there is a relatively steep learning curve to creating such visualisations,
which is exactly what point-and-click methods are trying to avoid.

No matter how you produce your visualisations, the time spent on developing your skills in
that medium is what buys you the ability to control and customise your creations. This
upfront time investment will also often make you faster at producing future graphics in that
medium.

Whenever you approach a new visualisation problem, you should pick your tools and medium
judiciously. You have to balance your immediate needs for speed, accuracy and reproducibility
against your current skill level and improving those skills in the medium to long term. Unfor-
tunately, the only way to make good visualisations is to make lots of bad ones and even more
mediocre ones first.

9.2.3 ggplot2

If your aim is to produce a wide range of high quality data visualisation using R, then the
{ggplot2} package is one of the most versatile and well documented tools available to you.
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The g’s at the start of the package name stand for grammar of graphics. This is an opinionated,
abstract approach to constructing data visualisations programmatically, by building them up
slowly and adding additional plot elements one layer at a time.

This idea of a “grammar of Graphics” was originally introduced by Leland Wilkinson. The
paper shown by Hadley Wickham, and the associated {ggplot2} package popularised this
approach within the R community. Like many of the tidyverse collection of packages that we
have met already, {ggplot2} provides simple but specialised modular functions that can be
composed to create complex visualisations.

If you’d like to learn how to use {ggplot2}, I wouldn’t recommend starting with the paper
nor would I recommend trying to get started with the docs alone. Instead, I would suggest
you work through an introductory tutorial (e.g. evolution of a ggplot or beautiful plotting in
R), or one of the resources linked within the package documentation.

Once you have a grasp of the basic principles {ggplot2} (geometries, aesthetics, themes) the
best way to improve is to make your own plots, using reference texts and other people’s work
as a guide. A great source of inspiration here is the Tidy Tuesday data visualisation challenge.
You can search for the challenge on Github to inspect both the plots made by other people
and the code that was used to make them.
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9.3 Your Medium �

9.3.1 Where is your visualisation going?

The second aspect that I recommend you think about before starting a data visualisation
is where that graphic is going to be used. The intended location for your visualisation will
influence both the composition of your graphic and also the amount of effort that you dedicate
to it.
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For example, consider making an exploratory plot at the start of a project to improve your
own understanding of the data and its structure. In this case you don’t need to spend hours
worrying about refining axis labels, colour schemes or which file format to save your work in.

If you are developing a figure to share in a daily stand-up meeting with your team then you
should take a little more care to ensure that your work can be clearly understood by others.
For example you might spend some time to ensure that the legend and axis labels are both
large and sufficiently informative.

Further refinement will be required if you plan to use your visualisation in external presentation.
Is the message of the visualisation immediately clear? Will the graphic it still be clear when
displayed in a boardroom or conference hall, or will it pixellate? Finally, how long will the
audience have to interpret the visualisation while you are speaking? Even if slide decks are
made available, very few audience members will actually refer to them before or after the
presentation.

The opposing consideration has to be made when preparing a visualisation for a report or
scientific paper. In print, plots and tables can be very small - particularly within two-column
or grid layouts. You then have to be wary about the legibility of your smallest text (think values
on axes) to ensure that your visualisation can be clearly understood, whether the document
is being read zoomed-in on a computer screen or printed out in black and white.

9.3.2 File Types

To ensure that your graphics are suitable for the intended medium it is helpful to know a little
bit about image file types.

There are two dominant types of image file: vector graphics and bitmap graphics.

Bitmap graphics store images as a grid of little squares and each of these pixels takes a
single, solid colour. If you make a bitmap image large enough, either by zooming in or by
using a really big screen, then these individual pixels become visible. Usually this isn’t going
to be your intention, so you need to ensure that the resolution of your graphic (its dimensions
counted in pixels) is sufficiently large.

Vector graphics create images using continuous paths and fill the areas that these enclose
with flat colour. These vector images can be enlarged as much as you like without the image
quality becoming compromised. This is great for simple simple designs like logos, which have
to be clear when used on both letterhead and billboards.

However, these vector graphics are more memory intensive than bitmap images, particularly
when there are many distinct colours or objects within the image. This can be a particular
problem in data science, for example when creating a scatter plot with many thousands of
data points.
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Figure 9.4: Exaggerated example of a pixellated image. Picture shows a stag standing in the
countryside with a resolution of approximated 40 x 40 pixels.
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It can often be useful to save both a bitmap and vector version of your most important graphics.
This way you can use bitmap when you need small files that load quickly (like when loading a
webpage) and vector graphics when you need your visualisation to stay sharp when enlarged
(like when creating a poster or giving a presentation in an auditorium).

9.4 Your Audience �

9.4.1 Know Your Audience

Data visualisations are a tool for communicating information. To make this communication
as effective as possible, you have to target your delivery to the intended audience.

• Who is the intended audience for your visualisation?

• What knowledge do they bring with them?

• What assumptions and biases do they hold?

Creating personas for distinct user groups can be a helpful way to answer these questions,
particularly when the user population are heterogeneous.
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To know how to target your delivery to a particular audience, you fist have to identify exactly
who that is.

To make a compelling data visualisation you have to have some idea of the background knowl-
edge that the viewer brings. Are they a specialist in statistics and data science or does their
expertise the area of application? Are the findings that you’re presenting going to come as a
surprise to the viewer or will they validate their pre-existing knowledge?

It’s worth considering these prior beliefs and how strongly they are held when constructing your
visualisation. Take the time to consider how this existing knowledge could alter or influence
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the viewer’s interpretation of what you’re showing to them. If your conclusions go against
their experience or knowledge then you need to design your visualisation to be as clear and
persuasive as possible. On the flip-side, you might be presenting information on a topic that
the viewer is ambivalent about, is actively bored by or is wilfully trying to ignore. In that case,
you can take special care to compose engaging visualisations to capture and hold the attention
of your audience.

9.4.2 Preattentive Attributes

When crafting a visualisation we want to require as little work as possible from the viewer. We
can do this by using pre-attentive attributes such as colour, shape size and position to encode
our data values.

Figure 9.5: Examples of preattentive attributes

These preattentive attributes are properties of lines and shapes that provide immediate visual
contrast without requiring active thought from the viewer. As we will see, care needs to be
taken here to ensure that we are don’t mislead the viewer with how we use these attributes.

9.4.3 Example: First Impressions Count

This figure presents a bar chart of the mean height of males in several countries, but has
swapped out the bars for human outlines. While the visualisation has an attractive, minimal
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Figure 9.6: A questionably designed barchart of average male heights in the Nederlands, United
Kingdom, USA Inida and Indonesia.
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design and a pleasant colour scheme, it doesn’t do a good job of immediately conveying the
relevant information to the viewer.

The three main issues with this plot arise from swapping the bars of this plot for male silhou-
ettes and are caused by the difference in how humans perceive lengths and areas. Typically,
we make immediate pre-attentive comparisons based on area but can draw more accurate,
considered comparisons when comparing lengths.

By replacing bars with human outlines this plot breaks the proportionality of length and
area that is inherent in a bar plot. This causes dissonance between immediate and considered
interpretation of this plot. An additional issue is that the silhouettes overlap, creating a forced
perspective that makes it seem like some the outlines are further back and therefore even larger
if this forced perspective is taken into account.

These three issues are important to consider when constructing your own visualisations. Are
you showing all the values that the data could take, or focusing on a smaller interval to provide
better contrast? If you are using the size of a circle to represent a value, are you changing
the diameter or area in proportion to the data value? Finally, if you are making a plot that
appears three-dimensional, have you done so on purpose? If so, could one of those dimensions
be better represented by an attribute other than position?

9.4.4 Visual Perception

When reducing the dimensionality of your plot you may wish to represent a data value using
colour rather than position. When deciding on how to use colour, you should keep your
audience in mind.

Is your aim to two or more categories? In that case, you’ll need to select your finite set of
colours and ensure that these can be distinguished.

Are you are representing a data value that is continuous or has an associated ordering? Then
you will again have to select your palette to provide sufficient contrast to all viewers of your
work.

If you are representing a measurement that has a reference value (for example 0 for temperature
in centigrade) then a diverging colour palette can be used to represent data that are above or
below this reference point. This requires some cultural understanding of how the colours will
be interpreted, for example you are likely to cause confusion if you an encoding of red for cold
and blue for hot.

For colour scales without such a reference point then a gradient in a single colour is likely the
best option. In either case, it is important to check that a unit change in data value represents
a consistent change in colour across all values. This is not the case for the rainbow palette
here (which is neither a single gradient nor a diverging colour scale).
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Figure 9.7: Some default colour scales in R
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To improve accessibility of your designs, I would recommend one of the many on-line tools to
simulate colour vision deficiency or using a pre-made palette where this has been considered
for you. A good, low-tech rule of thumb is to design your visualisations so that they’re still
easily understood when printed in greyscale. This can mean picking appropriate colours or
additionally varying the point shape, line width or line types used.

Figure 9.8: Desatureated colour scales in R

For a practical guide on setting colours see this chapter of exploratory data analysis by Roger
Peng.

9.4.5 Alt-text, Titles and Captions

Captions describe a figure or table so that it may be identified in a list of figures
and to add additional detail (where appropriate).

Alternative text describes the content of an image for a person who cannot view
it. (Guide to writing alt-text)
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Titles give additional context or identify key findings. Active titles are preferable.

When visualisations are included in a report, article or website, they are often accompanied by
three pieces of text. The title, the caption and the alt-text all help the audience to understand
a visualisation but each serves a distinct purpose.

9.4.5.1 Captions

A caption is short description of a visualisation. Captions usually displayed directly above or
below the figure or table that they describe. These captions serve two purposes: in a report,
the caption can be used to look up the visualisation from a list of figures or tables. The
second purpose of a caption is to add additional detail that you don’t want to add to the plot
directly. For example caption might be “Time series of GDP in the United States of America,
2017-2022. Lines show daily (solid), monthly (dashed) and five-year (dotted) mean values.”

9.4.5.2 Alt-text

Alt text or alternative text is used to describe the content of an image to a person who can’t
view it. This text is helpful for people with a visual impairment, particularly those who use a
screen reader. Screen reading software reads digital text out loud but can’t interpret images.
Such software replaces the image with the provided alternative text. Alt text is also valuable
in cases when the image can’t be found or loaded, for example because of an incorrect file path
or a slow internet connection, because it will be displayed in place of the image.

The purpose of alt-text is different from a caption. It’s designed as a replacement for the
image, not just a shorthand or to provide additional information. If there is an important
trend or conclusion to be drawn from the visualisation (that is not already mentioned in the
main text) this should be identified in the alt-text. This sort of interpretation is a key aspect
of alt-text that shouldn’t be included in a caption.

9.4.5.3 Titles

Titles give additional context that is not conveyed by the axis labels or chart annotations.
Alternatively the title can be used like a newspaper headline to deliver the key findings of the
visualisation. One example of this might be when looking at a visualisation that is composed
of many smaller plots, each showing the GDP for a US state over the last five years. Title
for each smaller plot would identify the state it is describing, while the overall title might be
something like “All US states have increased GDP in the period 2017-2022”.

If you are including this type of interpretive title, make sure that the same interpretation is
clear in the alt-text.
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9.5 Your Story �

The fourth aspect of a successful data visualisation is that it must tell a story. This story
doesn’t need to be a multi-generational novel or even a captivating novella. If a picture
speaks a thousand words, really what your aiming for is the visual equivalent of an engaging
anecdote.

Your visualisation should be something the grabs viewers attention and through its composition
or content alters their knowledge or view of world in some way.

Telling effective stories requires planning. How you construct your narrative depends on what
effect you want to have on your audience. I’d encourage you to think like a data journalist and
go about your work with its intended effect clear in your mind. Is your purpose to inform them
of a fact, to persuade them to use a different methodology or entertain them by presenting
dull or commonplace data in a fresh and engaging way?

In reality your goal will be some mixture of these, at an interior point of this triangle. Clearly
identifying this point will help you to present your visual story in a way that works towards
your aims, rather than against them.

On the point of presentation, it is important to realise that there is no neutral way to present
information. In creating a visualisation you’re choosing which aspects of the data to emphasise,
what gets summarised and what is not presented at all. This is how you construct a plot that
tells a clear and coherent story. However, there is more than one story that you could tell
from a single dataset.

As an example of this, let’s consider a time-series showing the price of two stocks and in
particular the choice of scale on the y-axis. Suppose the two stock have values fluctuating
around $100 per share. Choosing a scale that goes from $90 to $120 would emphasise the
differences between the two stocks. Setting the lower limit to $0 would instead emphasise that
these variations are small relative to the overall value of the stocks. Both are valid approaches
but tell different stories. Be clear and be open about which of these you are telling and why
you have chosen that over the alternative.

# Load required libraries
library(ggplot2)
library(dplyr)
library(magrittr)
library(cowplot)

# Set simulation parameters
n_out <- 365
initial_value <- 100

162



Figure 9.9: Illustration of a blue triangle with the words entertain, persuade and inform written
at each corner.
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# Simulate data
set.seed(007)

price <- rep(NA_real_, n_out)
price[1] <- initial_value

for (i in 2:n_out) {
a <- rnorm(n = 1, mean = 1, sd = 0.01)
b <- rnorm(n = 1, mean = 0, sd = 0.05)
price[i] <- a * price[i-1] + b

}

stock <- tibble(
date = seq(from = as.Date("2023-01-01"), length.out = n_out, by = "day"),
price = price

)

# Construct plot
p <- stock %>%
ggplot(aes(x = date, y = price)) +
geom_line(color = "darkorange") +
ylab("Stock Price, USD") +
theme_minimal() +
theme(

axis.text = element_text(size = 10),
axis.title = element_text(size = 9, face = "bold", hjust = 0.98, vjust = 2),
plot.title = element_text(size = 15, hjust = 0.02),
plot.subtitle = element_text(size = 12, hjust = 0.02)

)

p1 <- p + ylim(90, 125)
p2 <- p + ylim(0, 125)

plot_grid(p1, p2, nrow = 2, ncol = 1)
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A final cross-over from data journalism is that your visualisations will be competing for your
viewers attention. You have to compete against everything else that is going on in their
lives. Establish a clear “hook” within your visualisation to attract your viewer’s attention
and immediately deliver the core message. This might be done with a contrasting trend-line
or an intriguing title. Lead their attention first to the key message and then the supporting
evidence.

9.6 Your Guidelines �

9.6.1 Standardise and Document

The final consideration when creating visualisations is to reduce the number of considerations
that you have to make in the future. This is done by thinking carefully about each of the
decisions that you make and writing guidelines so that you make these choices consistently.

The choices that go into making an effective data visualisation are important and deserve
careful consideration. However, this consideration comes at a cost. To the employer this is
the literal, financial cost of paying for your time. More broadly this is the opportunity cost of
all the other things that you could have been doing instead.

To be efficient in our visualisation design, we should extend our DRY coding principles the de-
sign processes. Make choices carefully and document your decisions to externalise the cognitive
work required of you in the future.
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Many companies aware of these financial and opportunity costs and provide style guides for
visualisations in a similar manner to a coding or writing style guide. This not only externalises
and formalises many decisions, but it also leads to a more uniform style across visualisations
and the data scientists producing them. This leads to a unified, house-style for graphic design
and a visual brand that is easily identifiable. This is beneficial for large companies or personal
projects alike.

9.6.2 Example Style Guides

I’d highly recommend exploring some visualisation guides to get an idea of how these are
constructed and how you might develop your own.

Unsurprisingly some of the best guides come from media outlets and government agencies.
These businesses are used to writing style guides for text to create and maintain a distinctive
style across all of their writers.

• BBC

– Infographics Guidelines
– R Cookbook
– {bbplot}

• The Economist

• The Office for National Statistics

• Eurostat

• Urban Institute

• The Pudding (learning resources)

The level of detail and technicality varies wildly between these examples. For instance, the
BBC do not provide strong guidelines on the details of the final visualisation but do provide
a lot of technical tools and advice on how to construct those in a consistent way across the
corporation. They’ve even gone so far as to write their own theme for ggplot and to publish
this as an R package!
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9.7 Wrapping Up

� Think about your tools.

� Think about your medium.

� Think about your audience.

� Think about your story.

� Think about your guidelines.

Data visualisation might seem like a soft skill in comparison to data acquisition, wrangling
or modelling. However, it is often effective visualisations that have the greatest real world
impact.

It is regularly the highly effective figures within reports and presentations that determine
which projects are funded or renewed. Similarly, visualisations in press releases can determine
whether the result of your study are trusted, correctly interpreted, and remembered by the
wider public.

When constructing visualisations it is important to consider whether there are existing guide-
lines that provide helpful constraints to your work. From there, determine the story that you
wish to tell and exactly who it is that your are telling that story to. Once this is decided you
can select the medium and the tools that you use to craft your visualisation so that you have
the greatest chance of achieving your intended effect.
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Checklist

Videos / Chapters

□ Data Wrangling (20 min) [slides]

□ Data Exploration (25 min) [slides]

□ Data Visualisation (27 min) [slides]

Reading

Use the Data Exploration and Visualisation section of the reading list to support and guide
your exploration of this week’s topics. Note that these texts are divided into core reading,
reference materials and materials of interest.

Activities

Core:

□ NormConf is a conference dedicated to the unglamorous but essential aspects of working
in the data sciences. The conference talks from December 2022 are available as a Youtube
Playlist. Find a talk that interests you and watch it, then post a short summary to
EdStem, describing what you learned from the talk and one thing that you still do not
understand.

□ Work through this ggplot2 tutorial for beautiful plotting in R by Cédric Scherer, recre-
ating the examples for yourself.

□ Using your rolling_mean() function as inspiration, write a rolling_sd() function that
calculates the rolling standard deviation of a numeric vector.

□ Extend your rolling_sd() function to optionally return approximate point-wise
confidence bands for your rolling standard deviations. These should be ±2 standard
errors by default and may be computed using analytical or re-sampling methods.
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□ Create a visualisation using your extended rolling_sd() function to assess whether
the variability in the daily change in Dow Jones Index is changing over time. [data]

Bonus:

□ Add your rolling_sd() function to your R package, adding documentation and tests.

□ During an exploratory analysis, we often need to assess the validity of an assumed distri-
bution based on a sample of data. Write your own versions of qqnorm() and qqplot(),
which add point-wise tolerance intervals to assess whether deviation from the line 𝑦 = 𝑥
are larger than expected.

□ Add your own versions of qqnorm() and qqplot() to your R package, along with docu-
mentation and tests.

Live Session

In the live session we will begin with a discussion of this week’s tasks. We will then break into
small groups for two data visualisation exercises.

(Note: For one of these exercises, it would be helpful to bring a small selection of coloured
pens or pencils, of you have access to some. If not, please don’t worry - inventive use of black,
blue and shading are perfectly acceptable alternatives!)

Please come to the live session prepared to discuss the following points:

• Which NormConf video did you watch and what did you learn from it?

• Other than {ggplot2}, what else have you used to create data visualisations? What are
their relative strengths and weaknesses?

• How did you implement your rolling_sd() function and what conclusions did you draw
when applying it to the Dow Jones data?
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Part IV

Preparing for Production
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Part V

Introduction
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Important

Effective Data Science is still a work-in-progress. This chapter is currently a dumping
ground for ideas, and we don’t recommend reading it.
If you would like to contribute to the development of EDS, you may do so at https:
//github.com/zakvarty/data_science_notes.
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10 Reproducibility

Note

Effective Data Science is still a work-in-progress. This chapter is largely complete and
just needs final proof reading.
If you would like to contribute to the development of EDS, you may do so at https:
//github.com/zakvarty/data_science_notes.

10.1 The Data Scientific Method

In what we have covered so far we have been very much focused on the first aspect of data
science: the data. When we come to consider about whether our work can be reproduced or
our results can be replicated, this shifts our focus to the second other, the science.

Figure 10.1: Cycle of scientific enquiry.

As data scientists, we like to think that we are applying the scientific method in our work.
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We start with a question we want to answer or a problem we want to solve. This is followed
by a search of the existing literature: is this is a well-known problem that lots of people have
solved before? If it is, fantastic, we can learn from their efforts. If not, then we proceed to
gather our own evidence and combine this with whatever existing knowledge we could scrape
together. Finally, we draw conclusions from this synthesised information.

When doing so we acknowledge that the conclusions we reach are not the truth, just our current
best approximation of it. We have a usefully simplified model of the messy reality that we can
share with the world. We will happily update our model as we become aware of new evidence,
whether that new information supports or contradicts our current way of thinking.

That sounds excellent and is, in an ideal world, how both science and data science would
progress. However, just like our models this is a simplified (and in this case idealised) descrip-
tion of what really happens.

10.2 Issue: Multiple, Dependent Tests

• Projects are usually not a single hypothesis test

• Sequence of dependent decisions

• e.g. Model development

• Can fool ourselves by looking lots of times or ignoring sequential and dependent structure.

The aims of a data science project are rarely framed as a clear an unambiguous hypothesis, for
which we will design a study and perform a single statistical analysis. Apart from in special
cases, like A/B testing, we have a much more general aim for our data science projects.

174



{Abstract
text of Gelman and Loken (2013).}

We might want to construct a model for a given phenomenon and we’ll try many variants
of that model along the way. By taking a more relaxed approach to data analysis, data
scientists can run the risk of finding spurious relationships within our data that don’t hold
more generally. If you look for a relationship between the quantity you are trying to predict
and enough samples of random noise will almost surely find a significant relationship, even
though there is no true link.
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10.3 Issues: 𝑝-hacking and Publiction Bias

{Bar chart of
p-values in medical publications, showing a large drop between 4-5 percent and 5-6 percent.}

Okay, so our methods of investigation as data scientists might not be completely sound, but
that should be balanced by the results of other studies that exist, right? Well, the second
worrisome aspect of this process is that we can’t always trust the published literature to be a
fair representation of what people have tried in the past.

Studies that don’t provide strong evidence against the null hypothesis rarely make it into
publications, reports or the news. This is largely because of the way that scientific enquiry is
rewarded in the the academy, business and the media. Funding and attention tend to go to
studies with new findings, rather than those which aim to confirm or strengthen the findings
of existing studies.

This systemic problem incentives scientists to ‘massage’ numbers to obtain a 𝑝-value less than
0.05 so that a result can be reported as statistically significant. This process is known as 𝑝-
hacking and can occur through deliberate malpractice but more often it’s a result of scientists
generally not receiving adequate training in statistics. As statistically trained data scientists
we know that a declaration of significance is no indication of a meaningful effect size and that
the conventional significance level of 5% is entirely arbitrary. However, we need to be aware
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that this is not the case across science and that even we aren’t immune to the societal and
systematic influences that favour the publication of novel results over confirmatory ones.

These influences also lead to a much more subtle problem than direct 𝑝-hacking. Consider a
model with an obvious but unnecessary additional property to add: a example here might be
adding an unnecessary term to a regression. Because this extension is such low hanging fruit,
many scientists independently design experiments to test it out. Most of these experiments
provide insufficient evidence against the null hypothesis and don’t get developed into published
papers or technical reports, because they just support the status-quo. However, after enough
people have attempted this some scientist will get “lucky” and find a significant (and potentially
relevant) benefit. Of all the experiments that were done, this is the only one that makes it
onto the public record.

All of these studies being left in the proverbial desk drawer induces publication bias in the
scientific literature. When we come to assess the state of existing knowledge, we are unable to
properly assess the importance of findings, because we lack the context of all those null results
that went unreported.

This same process means that the results of many more scientific studies than we would expect
cannot be recreated. This is what is known as the scientific replication crisis.

10.4 Reproducibility

Reproducibility: given the original raw data and code, can you get all of the results
again?

• Reproducible != Correct

• “Code available on request” is the new “Data available on request”

• Reproducible data analysis requires effort, time and skill.

This idea of reproducibility requires us to be able to recover the exact same numerical sum-
maries as the original investigator. In particular this means we should be able to reproduce
the exact same point estimates and measures of uncertainty that they did, which ensures we’ll
draw the same conclusions as that original investigator.

When putting our work into production there are several reasons why we might require it
to be reproducible. The first is logistical: production code needs to be robust and efficient -
this often means your code will be re-factored, rewritten or translated into another language.
If your results are not reproducible then there is no way to verify that this has been done
correctly. Secondly, if a problem is identified in your work (say a customer raises a complaint
that their loan application was incorrectly rejected) you need to be able to accurately recreate
that instance to diagnose if there is a problem and exactly what caused it.
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Note that just because findings are reproducible, that doesn’t by any means imply that they’re
correct. We could have a very well documented but flawed analysis that is entirely reproducible
but is also completely unsuitable or just plain wrong.

In our data science projects, we have already taken several steps that greatly improve the
reproducibility of our work. Although we scripted, tested and documented our work to improve
the management of our project, these decisions improve the scientific quality of our work too.
This puts us in a strong position relative to the scientific literature as a whole.

At a point now where it is almost standard to publish data along with papers, but for a long
time this was not the case and data if data were available at all, this was only by request. We
are now in a similar situation when it comes to code. It’s still far from standard for the analysis
code to be required and put up to detailed scrutiny as part of the peer-review process.

With a little more context this isn’t so unreasonable. Across many scientific disciplines, code-
based approaches to analysis is not standard; statistical software with a graphical user interface
is used instead. The idea here is to allow scientists to analyse their own data by providing
tools trough a combination of menus and buttons. However, these interfaces often leave no
record of how the data were manipulated and the software itself can be highly specialised or
proprietary. This combination means that even when full datasets are provided, it is often
impossible for others to reproduce the original analysis.

None of this is meant to scold or disparage scientists who use this type of software to allow
them to perform statistical analyses. You’re well aware of how much time and effort it takes to
learn how to use and implement statistical methods correctly. This is time that other scientists
invest in learning their subject, so that they can get to the point of doing research in the first
place. This is one of the wonders of data science: the ability to work in multi-disciplinary
teams where individual members are specialised in different areas.

This is where we need to pause and check ourselves, because the same fate can easily befall us
as data scientists. Yes, it take time to learn the skills and practices to ensure reproducibility,
but it also takes time to implement them and the time of an expert data practitioner doesn’t
come cheap. If you wait until the end of a project before you make it reproducible then you’ll
usually be too late - time or money will have run out.

10.5 Replicability

Replicable: if the experiment were repeated by an independent investigator, you
would get slightly different data but would the substative conclusions be the same?

• In the specific sense, this is the core worry for a statistician!

• Also used more generally: are results stable to perturbations in population / study design
/ modelling / analysis?

178



• Only real test is to try it. Control risk with shadow and parallel deployment. Statisticians
are well aware that if we were to repeat an experiment we would get slightly different
data. This would lead to slightly different estimates and slightly different results.

Ultimately, this is the core problem that statisticians get paid to worry about: will those
changes be small enough that the substantive conclusions are not impacted? Yes, point esti-
mates will vary slightly but do your conclusions about the existence, direction or magnitude of
an effect still hold? Alternatively, if you are estimating a relationship between two variables,
is the same functional form chosen as the most suitable?

In a general scientific context, replication takes a more broad meaning and asks whether the
key properties of your results could be replicated by another person. In the context of getting
your work put into production, we acre concerned about whether your the results of your
findings will also hold when applied to future instances that might differ from those you have
seen already.

If you come to data science from a statistical background then you are well accustomed to
these sorts of considerations. Whenever you perform a hypothesis test or compare two models,
you take steps to make sure the comparison is not only valid for this particular sample, but
that is also true out-of-sample. This is the whole reason data scientists make training and test
sets in the first place, as an approximate test for this sort of generalisation. We we do any of
these things we are asking of ourselves: will this good performance replicate if we had different
inputs?

Of course train-test split, bootstrap resampling or asymptotic arguments can only ever ap-
proximate the ways in which our sample differs from the production population, to which our
models will be applied. The only way to truly assess the out-of-sample performance of our
models or generalisability of our findings is to put that work into production.

This opens us up to risk: what if our findings don’t generalise and our new model is actually
much worse than the current one? It’s not possible to both deploy our new model and also
avoid this risk entirely. However, we can take some steps to mitigate our level of exposure.

10.5.1 Shadow deployment

In the most risk-adverse setting we might implement a shadow deployment of our new model.
In this case, the current model is still used for all decision making but our candidate model is
also run in the background so that we can see how it might behave in the wild. This is good in
that we can identify any points of catastrophic failure for the new model, but is also expensive
to run and can give us only limited information.

Suppose, for example, our model is a recommender system on a retail website. A shadow
deployment will let us check that the new system functions correctly and we can gather data
on what products are recommended to each customer and investigate how these differ from
those recommended by the current system. A shadow deployment cannot in this case tell us
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what the customer would have done had they been shown those products instead. This means
that a shadow deployment doesn’t allow is to investigate whether the new system leads to
equivalent or greater revenue than the current system.

10.5.2 Parallel deployment

Parallel deployment or A/B tests have both the current and the proposed new models running
at the same time. This allows us to truly test whether our findings generalise to the production
population while controlling our level of risk exposure by setting the proportion of times each
model is used. The more instances we assign to the new model the faster we will learn about
its performance but this also increases our risk exposure.

10.6 Reproduction and Replication in Statistical Data Science

10.6.1 Monte Carlo Methods

In data science we rely a lot on the use of stochastic methods. These are often used to increase
the chance of our findings being replicated by another person or in production. However, they
also make it more difficult to ensure that our exact results can be reproduced, whether by
another person or our future selves.

Monte Carlo methods are any modelling, estimation or approximation technique that leverages
randomness in some way.

We have seen examples of this to improve the probability of successful replication. The most
obvious example of this is the random allocation of data in a Train/Test split for model
selection.

Another example focused on improving replication is the use of bootstrap resampling to ap-
proximate the sampling distribution of a test statistic. This might be a parametric bootstrap,
where alternative datasets are generated by sampling values from the fitted model of our
observed data. Alternatively, a non-parametric bootstrap would generate these alternative
datasets by sampling from the original data with replacement.

Monte Carlo methods can also be used to express uncertainties more generally, or to ap-
proximate difficult integrals. These are both common applications of Monte Carlo methods
in Bayesian modelling, where (unless our models are particularly simple) the posterior or
posterior-predictive distribution has to be approximated by a collection of values sampled
from that distribution.

Each time we run any of these analyses we’ll get slightly different outcomes. For our work to
be replicable we need to quantify this level of variation. For example, if we had a different
sample from the posterior distribution, how much would the estimated posterior mean change
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by? Sometimes, as in this case, we can appeal to the law of large numbers to help us out.
If we take more samples, the variation between realisations will shrink. We can then collect
enough samples to our estimated mean is stable across realisations, up to our desired number
of significant figures.

To make our results reproducible we will have to ensure that we can reproduce the remaining,
unstable digits for any particular realisation. We can do this by setting the seed of our random
number generator, an idea we will return to shortly.

10.6.2 Optimisation

Optimisation is the second aspect of data science that can be very difficult to ensure is repro-
ducible and replicable.

Is the optimum you find stable over:

• runs of the procedure?
• starting points?
• step size / learning rate?
• realisations of the data?

Figure 10.3: A poorly drawn contour plot. Local modes make this optimiation unstable to the
choice of starting point.
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If optimisation routines are used in parameter estimation, we have to ensure that the results
they find for a particular data set are reproducible for a given configuration. This might be a
given data set, initial set of starting parameters and step size, the learning rate (which controls
how that step size changes) and the maximum number of iterations to perform.

We additionally need to be concerned about replication here. If we had chosen a different
starting point would the optimisation still converge, and would it converge to the same mode?
Our original method may have found a local optimum but how can we confirm that this is a
global optimum?

If the optimisation fails to converge, can your reproduce that case to diagnose the problem?
This can be particularly tricky when the optimisation routine itself uses Monte Carlo methods,
such as stochastic gradient descent or simulated annealing.

10.6.3 (Pseudo-)Random Numbers

Sometimes we have stochastic elements to our work that we can’t use brute force to eliminate.
Perhaps this is beyond our computational abilities or else the number of realisations is an
important, fixed aspect of our study.

Fortunately, in computing it’s not common to have truly random numbers. Instead, what we
usually have is a complex but deterministic function that generates a sequence of numbers
that are statistically indistinguishable from a series of independent random variates.

The next term in this sequence of pseudo-random numbers is generated generated based on
value the current one. This means that, by setting the starting point, we can always get the
same sequence of pseudo-random variates each time we run the code. In R we set this starting
point using set.seed()

This is especially useful for simulations that involve random variables, as it allows us to recreate
the same results exactly. This not only makes it possible for others to recreate our results but
it can also make it much easier to test and debug our own code.

# different values
rnorm(n = 4)
#> [1] -1.2053334 0.3014667 -1.5391452 0.6353707
rnorm(n = 4)
#> [1] 0.7029518 -1.9058829 0.9389214 -0.2244921
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# the same value
set.seed(1234)
rnorm(n = 4)
#> [1] -1.2070657 0.2774292 1.0844412 -2.3456977

set.seed(1234)
rnorm(n = 4)
#> [1] -1.2070657 0.2774292 1.0844412 -2.3456977

10.7 Beware

When running code sequentially and interactively, setting the seed is about all you will need
to solve reproducibility problems. However, I’d advise you to take great care when combining
this with some of the methods we’ll see for speeding up your code. In some cases, the strategies
to optimize your code performance can interfere with the generation of random numbers and
lead to unintended results.

When writing code that’s executed in parallel across multiple cores or processors, you have
to carefully consider is whether or not to give each the same seed value. The correct decision
here is context specific and depends on the interpretation of the random variates you will be
generating. If you are making a comparison between iterations it might be important the the
random aspects are kept as similar as possible, while if you are paralleling only for speed gains
this might not be important at all.

Finally, it’s important to be wary of the quality of pseudo-random number generation and the
interfacing R with other programming languages. R was developed as a statistical program-
ming language and most other languages are not as statistically focused. Different languages
may use different algorithms for generating pseudo-random numbers, and the quality of the
generated numbers can vary. It’s important to make sure that seeds are appropriately passed
between languages to ensure that the correct sequence of random numbers is generated.

10.8 Wrapping Up

To get our work put into production it should be both reproducible and replicable.

• Reproducible: can recreate the same results from the same code and data

• Replicable: core results remain valid when using different data
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While randomness is a key part of most data science workflows but can lead to reproducibility
nightmares. We can manage these by appealing to the stability of averages in large samples
and by explicitly setting the sequence of pseudo-random numbers that we generate using
set.seed().

Finally, we should take special care when we have to combine efficiency with replicable work-
flows.

With these ideas you can now use good data to do good science.
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11 Explainability

Note

Effective Data Science is still a work-in-progress. This chapter is largely complete and
just needs final proof reading.
If you would like to contribute to the development of EDS, you may do so at https:
//github.com/zakvarty/data_science_notes.

11.1 What are we explaining and to whom?

There are many reasons you might need to explain the behaviour of your model before it can be
put into production. As an example, we can consider a credit scoring system that determines
whether or not customers should be given a line of credit.

• Regulatory or legal requirements to describe how your model works (e.g. ban on “black-
box” modelling).

• Understanding how your model works to improve it.
• Explaining to individual load decisions to customers.

In each of these cases, what exactly do we mean by an explanation? It’s likely not the same
thing in each example.

• Data scientists we might be interested to know exactly what types of mapping between
covariates and responses can be represented by the neural network architecture underly-
ing the credit scoring system.

• Stakeholders within the company or regulators are likely indifferent to this and are more
concerned about understanding the general behaviour of the model across large numbers
of loan applications.

• Finally, individual customers might have some investment in the overall behaviour of the
scoring model but would also like to know what actions they can take to increase their
chance of securing a loan.

Between each of these examples, the level of technical detail differs but more importantly the
fundamental nature of the explanations are different.
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11.2 Explaining a Decision Tree

With some models giving an explanation is relatively straightforward. Decision trees are
perhaps the easiest model to explain because they mimic human decision making and can be
represented like flow-charts that make sequential, linear partitions of the predictor space.

Figure 11.1: An example of a decision tree, optimised to correctly identify category 1 ambu-
lance calls in as few questions as possible.

These models use the same sort of logic that is used for medical triage when you call an
ambulance, to determine the urgency of the call. The binary decisions used in this type of
triage are optimised to identify critical calls as soon as possible, but this is just one form of loss
function we could use. We might instead pick these partitions to get the most accurate overall
classification of calls to urgency categories. This might not be an appropriate loss function for
ambulance calls but might be when deciding which loan applicants to grant credit to.
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The issue is that these decision trees are limited in the relationships they can represent (linear
relationships approximated by step function) and are sensitive to small changes in the training
data. To overcome these deficiencies we can use a bootstrap aggregation or a random forest
model to make predictions based on a collection of these trees. This leads to models that
are more stable and flexible but also removes any chance of a simple and human-friendly
explanation.

11.3 Explaining Regression Models

Another model that is relatively straightforward to interpret is a linear regression. We can in-
terpret this model using the estimated regression coefficients, which describe how the predicted
outcome changes with a unit change in each covariate while the values of all other covariates
are held constant.

This is a global and a conditional explanation.

It is global because the effect of increasing a covariate by one unit is the same no matter what
the starting value of that covariate. The explanation is the same in all parts of the covariate
space.

The explanation is conditional because it assumes that all other values are held constant.
This can lead to some odd behaviour in our explanations, they are dependent on what other
terms are included (or left out of) our model.

This can be contrasted against non-linear regression, where covariate effects are still interpreted
conditional on the value of other covariates but the size or direction of that effect might vary
depending on the value of the covariate.

Here we have an example where a unit increase in the covariate is associated with a large
change in the model response at low values of the covariate, but a much smaller change at
large values of the covariate.

11.4 Example: Cherrywood regression

As an example of this we can look at the height, girth and volume of some cherry trees.

If we are wanting to use a lathe to produce pretty, cherry wood ornaments we might be
interested in understanding how the girth of the trees varies with their height and total volume.
Using a linear model, we see that both have a positive linear association with girth.

lm(Girth ~ 1 + Height, data = trees)
#>
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Figure 11.2: Linear models have global, conditional explanations, provided by the estimated
regression coefficients.
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Figure 11.3: Non-linear models have local, conditional explanations, provided by the estimated
regression coefficients.
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Figure 11.4: Cherry tree girth can be well modelled as a linear function of either tree height
or harvestable volume.

#> Call:
#> lm(formula = Girth ~ 1 + Height, data = trees)
#>
#> Coefficients:
#> (Intercept) Height
#> -6.1884 0.2557

lm(Girth ~ 1 + Volume, data = trees)
#>
#> Call:
#> lm(formula = Girth ~ 1 + Volume, data = trees)
#>
#> Coefficients:
#> (Intercept) Volume
#> 7.6779 0.1846

However, when we include both terms in our model, our interpretation changes dramatically.

191



lm(Girth ~ 1 + Height + Volume, data = trees)
#>
#> Call:
#> lm(formula = Girth ~ 1 + Height + Volume, data = trees)
#>
#> Coefficients:
#> (Intercept) Height Volume
#> 10.81637 -0.04548 0.19518

Height is no longer positively associated with girth. This is because the size, direction and
significance of our estimated effects is conditional on what other terms are included in the
model. For a fixed volume of wood, a taller tree necessarily has to have a smaller girth.

Techniques such as SHAP try to quantify the importance of a predictor by averaging over all
combinations of predictors that might be included within the model. You can read more about
such techniques in Interpretable Machine Learning by Christoph Molnar.

11.5 Simpson’s Paradox

This effect is related to Simpson’s Paradox, where a trend appears in several groups of data
but disappears or reverses when the groups are combined.

This regularly arises in fields like epidemiology, where population level trends are assumed to
apply at the level of individuals or small groups, where this is known as the ecological fallacy.

Actually, Simpson’s parodox is a terrible name, because it isn’t actually a paradox at all. It’s
not surprising that we have two different answers to two different questions, the supposed
contradiction only arises when we fail to distinguish between those questions.

What I hope to have highlighted here is that for some of the simplest models we might use as
data scientists, explanations are very much possible but must be made with care and attention
to detail - correctly interpreting these models in context can be far from straightforward.

11.6 What hope do we have?

At this stage, you might be asking yourself what hope we have of explaining more complex
models like random forests or neural networks, given how difficult it is to explain even the
simple models we might take as our benchmark. You’d be right to worry about this and it is
important to remain humble in what we can and cannot know about these complex systems
that we are building.

All hope isn’t lost though - we still have a few tricks up our sleeve!

192

https://christophm.github.io/interpretable-ml-book/shap.html
https://christophm.github.io/interpretable-ml-book/


−4

0

4

8

−2.5 0.0 2.5 5.0 7.5
x_1

x_
2

Groupings Unknown

Simpson's Paradox

−4

0

4

8

−2.5 0.0 2.5 5.0 7.5
x_1

x_
2

group

1

2

3

Groupings known

Figure 11.5: A simulated example in which a covariate has a negative trend at the population
level but a positive trend within each sub-group.
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11.6.1 Permutation Testing

Suppose we’re asked by our product manager to determine which predictors or covariates are
usually the most import in our model when determining credit scores and loan outcomes.

One way to do this would be to remove each covariate from the model and investigate how
that changes the predictions made by our model. However, we’ve seen already that removing
a predictor can substantively change some models.

So instead, we could answer this question by using permutation methods.

If we take the observed values of a covariate, say income, and randomly allocate these among all
our training examples then this will destroy any association between income and loan outcome.
This allows us to remove the information provided by income but without altering the overall
structure of our model. We can then refit our model to this modified data set and investigate
how rearranging the covariate alters our predictions. If there is a large performance drop, then
the covariate is playing an important role within our model.

There are many variations on this sort of permutation test. They can be simple but powerful
tools for understanding the behaviour of all sorts of model.

11.6.2 Meta-modelling

Meta-models are, as the name suggests, models of models and these can be effective methods
of providing localised explanations for complex models.

The idea here is to look at a small region of the covariate space that is covered by a complex
and highly flexible model, such as a neural network. We can’t easily give a global explanation
for this complex model’s behaviour - it is just too complicated.

However, we can interrogate the model’s behaviour within a small region and construct a
simplified version of the model (a meta-model) that lets us explain the model within that
small region. Often this meta-model is chosen as a linear model.

This is partly for convenience and familiarity but also has a theoretical backing: if our complex
model is sufficiently smooth then we can appeal to Taylor’s Theorem to say that in a small
enough region the mapping can be well approximated by a linear function.

This sort of local model explanation is particularly useful where we want to explain individual
predictions or decisions made by our model: for example why a single loan applicant was not
granted a loan. By inspecting the coefficients of this local surrogate model we can identify
which covariates were the most influential in the decision and suggest how the applicant could
increase their chance of success by summarising those covariates that were both influential and
are within the ability of the applicant to change. This is exactly the approach taken by the
LIME methodology developed by Ribiero et al.
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Figure 11.6: A local linear approximation in two dimensions
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11.6.3 Aggregating Meta-models

Using local or conditional explanations of our model’s behaviour can be useful in some circum-
stances but they don’t give a broader understanding of what is going on overall. What if we
want to know how a covariate influences all outcomes not a particular one? What if we care
about the covariate’s expected effect over all loan applicants, or the distribution of effects over
all applicants?

This is where local and conditional explanations are particularly nice. By making these ex-
planations at many points we can aggregate these explanations to understand the global and
marginal behaviour of our models.

To aggregate our conditional effects into a marginal effect, or a local effect into a global effect
we must integrate these over the joint distribution of all covariates. If this sounds a bit scary to
you, then you are right. Integration is hard enough at the best of times without adding in the
fact that we don’t know the joint distribution of the covariates we are using as predictors.

Don’t worry though, we can take the easy way out and do both of these things approximately.
We can approximate the joint distribution of the covariates by the empirical distribution
that we observe in our sample, and then our nasty integrals simplify to averages over the
measurement units in our data (the loan applicants in our case).

If we construct a local, conditional model for each loan applicant in our data set, we can
approximate the marginal effect of each covariate by averaging the conditional effects we
obtain for each loan applicant.

This gives us a global understanding of how each covariate influences the response of our
model. It does this over all possible values of the other covariates and appropriately weights
these according to their frequency within the sample (and also within the population, if our
sample is representative).

11.7 Wrapping Up

We’ve seen that as our models become more flexible they also become more difficult to explain,
whether that is to ourselves, and subject expert or a user of our model.

That’s not to say that simple models are always easy to explain or interpret, simple models
can be deceptively tricky to communicate accurately.

Finally, we looked at a couple of techniques for explaining more complex models.

We can use permutation tests measure feature importance in our models: shuffling the predictor
values breaks any relationship to our response, and we can measure how much this degrades
our model performance. A big dip implies that feature was doing a lot of explaining.
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Figure 11.7: Local approximations around each observation can be combined to understand
global model behaviour.
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We can also look at the local behaviour of models by making surrogate or meta models, that
are interpretable, and aggregate these to understand the model globally.

Effective explanations are essential if you want your model to be used in production and to
feed into real decisions decision making. This requires some level of skill with rhetoric to tailor
your explanation so that it is clear to the person who requested it. But this isn’t a soft skill,
it also requires a surprising amount of computational and mathematical skill to extract such
explanations from complex modern models.
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12 Scalability

Important

Effective Data Science is still a work-in-progress. This chapter is currently a dumping
ground for ideas, and we don’t recommend reading it.
If you would like to contribute to the development of EDS, you may do so at https:
//github.com/zakvarty/data_science_notes.

12.1 Scalability and Production

When put into production code gets used more and on more data. We will likely have to
consider scalability of our methods in terms of

• Computation time

• Memory requirements

When doing so we have to balance a trade-off between development costs and usage costs.

12.1.1 Example: Bayesian Inference

• MCMC originally takes ~24 hours

• Identifying and amending bottlenecks in code reduced this to ~24 minutes.

Is this actually better? That will depend on a number of factors, including:

• human hours invested
• frequency of use
• safe / stable / general / readable
• trade for scalability
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12.1.2 Knowing when to worry

Sub-optimal optimisation can be worse than doing nothing

… programmers have spent far too much time worrying about efficiency in the wrong
places and at the wrong times; premature optimisation is the root of all evil (or at
least most of it) in programming. - Donald Knuth

12.1.3 Our Focus

Writing code that scales well in terms of computaiton time or memory used is a huge topic.
In this section we restrict our aims to:

• Basic profiling to find bottlenecks.
• Strategies for writing scalable (R) code.
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• Signpost advanced methods & further reading.

12.2 Basics of Code Profiling

12.2.1 R as a stopwatch

The simplest way to profile your code is to time how long it takes to run. There are three
common ways to do this.

Firstly, you could record the time before your code starts executing, the time it completes and
look at the difference of those.

t_start <- Sys.time()
Sys.sleep(0.5) # YOUR CODE
t_end <- Sys.time()

t_end - t_start
#> Time difference of 0.5057299 secs

The system.time function provides a shorthand for this if your code runs sequentially and
extends the functionality to work for parallel code too.

system.time(
Sys.sleep(0.5)

)
#> user system elapsed
#> 0.000 0.000 0.506

The {tictoc} package has similar features, but also allows you to add intermediate timers to
more understand which parts of your code are taking the most time to run.

library(tictoc)

tic()
Sys.sleep(0.5) # YOUR CODE
toc()
#> 0.505 sec elapsed

With {tictoc} we can get fancy
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tic("total")
tic("first, easy part")
Sys.sleep(0.5)
toc(log = TRUE)
#> first, easy part: 0.509 sec elapsed
tic("second, hard part")
Sys.sleep(3)
toc(log = TRUE)
#> second, hard part: 3.01 sec elapsed
toc()
#> total: 3.527 sec elapsed

If your code is already very fast (but will be run very many times, so further efficiency gains
are required) then the methods may fail because they do not sample the state of the code at
a high enough frequency. In those cases you might want to explore the {mircobenchmark}
package.

12.3 Profiling Your Code

To diagnose scaling issues you have to understand what your code is doing.

• Stop the code at time 𝜏 and examine the call-stack.

– The current function being evaluated, the function that called that, the function
that called that, …, top level function.

• Do this a lot and you can measure (estimate) the proportion of working memory (RAM)
uses over time and the time spent evaluating each function.

library(profvis)
library(bench)

12.3.1 Profiling: Toy Example

Suppose we have the following code in a file called prof-vis-example.R.

h <- function() {
profvis::pause(1)

}
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g <- function() {
profvis::pause(1)
h()

}

f <- function() {
profvis::pause(1)
g()
profvis::pause(1)
h()

}

Then the call stack for f() would look something like this.

Figure 12.1: Callstack for f()
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We can examine the true call stack using the profvis() function from the {profvis} package.
By saving the code in a separate file and sourcing it into our session, this function will also
give us line-by-line information about the time and memory demands of our code.

source("prof-vis-example.R")
profvis::profvis(f())

In both the upper histogram and the lower flame plot we can see that the majority of time is
being spent in pause() and h(). What we have to be careful of here is that the upper plot
shows the total amount of time in each function call, so h() appears to take longer than g(),
but this is because it is called more often in the code snippet we are profiling.

12.4 Notes on Time Profiling

We will get slightly different results each time you run the function

• Changes to internal state of computer
• Usually not a big deal, mainly effects fastest parts of code
• Be careful with stochastic simulations
• Use set.seed() to make a fair comparison over many runs.

12.4.1 Source code and compiled functions

If you write a function you can see the source of that function by calling it’s name

pad_with_NAs <- function(x, n_left, n_right){
c(rep(NA, n_left), x, rep(NA, n_right))

}

pad_with_NAs
#> function(x, n_left, n_right){
#> c(rep(NA, n_left), x, rep(NA, n_right))
#> }

This is equally true for functions within packages.

eds::pad_with_NAs
#> function (x, n_left, n_right)
#> {
#> stopifnot(n_left >= 0)
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#> stopifnot(n_right >= 0)
#> stopifnot(class(x) %in% c("character", "complex", "integer",
#> "logical", "numeric", "factor"))
#> c(rep(NA, n_left), x, rep(NA, n_right))
#> }
#> <bytecode: 0x7fc5682894d8>
#> <environment: namespace:eds>

Some functions use compiled code that is written in another language. This is the case for
dplyr’s arrange(), which calls some compiled C++ code.

dplyr::arrange
#> function (.data, ..., .by_group = FALSE)
#> {
#> UseMethod("arrange")
#> }
#> <bytecode: 0x7fc56a25f208>
#> <environment: namespace:dplyr>

It is also true for many functions from base R, for which there is (for obvious reason) no R
source code.

mean
#> function (x, ...)
#> UseMethod("mean")
#> <bytecode: 0x7fc562b97a80>
#> <environment: namespace:base>

These compiled functions have no R source code, and the profiling methods we have used here
don’t extend into compiled code. See {jointprof} if you really need this profiling functional-
ity.

12.5 Memory Profiling

profvis() can similarly measure the memory usage of your code.

x <- integer()
for (i in 1:1e4) {
x <- c(x, i)

}

206

https://github.com/r-prof/jointprof


207



• Copy-on-modify behaviour makes growing objects slow.

• Pre-allocate storage where possible.
• Strategies and structures, see R inferno and Effecient R.

12.6 Tips to work at scale

TL;DR: pick your object types carefully, vectorise your code and as a last resort implement
your code in a faster language.

12.6.1 Vectorise

Two bits of code do the same task, but the second is much faster, because it involves fewer
function calls.

x <- 1:10
y <- 11:20
z <- rep(NA, length(x))

for (i in seq_along(x)) {
z[i] <- x[i] * y[i]

}

x <- 1:10
y <- 11:20
z <- x * y

Where possible write and use functions to take advantage of vectorised inputs. E.g.

rnorm(n = 100, mean = 1:10, sd = rep(1, 10))

Be careful of recycling!

12.6.2 Linear Algebra

X <- diag(x = c(2, 0.5))
y <- matrix(data = c(1, 1), ncol = 1)

X %*% y
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#> [,1]
#> [1,] 2.0
#> [2,] 0.5

More on vectorising: Noam Ross Blog Post

12.7 For loops in disguise

12.7.1 The apply family

Functional programming equivalent of a for loop. [apply(), mapply(), lapply(), …]

Apply a function to each element of a list-like object.

A <- matrix(data = 1:12, nrow = 3, ncol = 4)
A
#> [,1] [,2] [,3] [,4]
#> [1,] 1 4 7 10
#> [2,] 2 5 8 11
#> [3,] 3 6 9 12

# MARGIN = 1 => rows, MARGIN = 2 => columns
apply(X = A, MARGIN = 1, FUN = sum)
#> [1] 22 26 30

This generalises functions from {matrixStats}, where for some special operations we can do
all to the necessary calculation in C++.

rowSums(A)
#> [1] 22 26 30

12.7.2 {purrr}

Iterate over a single object with map().

mu <- c(-10, 0, 10)
purrr::map(.x = mu, .f = rnorm, n = 5)
#> [[1]]
#> [1] -10.591484 -9.060351 -9.492216 -10.642034 -10.405463
#>
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#> [[2]]
#> [1] -1.3510401 1.4797410 -0.2580480 0.4378293 1.5759402
#>
#> [[3]]
#> [1] 11.344607 9.237907 10.439590 10.357743 8.956596

Iterate over multiple objects map2() and pmap().

mu <- c(-10, 0, 10)
sigma <- c(0, 0.1, 0)
purrr::map2(.x = mu, .y = sigma, .f = rnorm, n = 5)
#> [[1]]
#> [1] -10 -10 -10 -10 -10
#>
#> [[2]]
#> [1] 0.03008142 -0.22460345 0.09546957 0.02397148 0.02343102
#>
#> [[3]]
#> [1] 10 10 10 10 10

mu <- c(-10, 0, 10)
sigma <- c(0, 0.1, 0)

purrr::pmap(
.f = rnorm,
n = 5,
.l = list(

mean = mu,
sd = sigma))

#> [[1]]
#> [1] -10 -10 -10 -10 -10
#>
#> [[2]]
#> [1] 0.02217263 0.07850441 0.02629728 0.03945660 -0.08541733
#>
#> [[3]]
#> [1] 10 10 10 10 10

For more details and variants see Advanced R chapters 9-11 on functional programming.
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12.8 Easy parallelisation with furrr

• {parallel} and {futures} allow parallel coding over multiple cores.

• Powerful, but steep learning curve.

• {furrr} makes this very easy, just add future_ to purrr verbs.

mu <- c(-10, 0, 10)
furrr::future_map(
.x = mu,
.f = rnorm,
.options = furrr::furrr_options(seed = TRUE),
n = 5)

#> [[1]]
#> [1] -8.716024 -10.148955 -8.125526 -9.211252 -9.474119
#>
#> [[2]]
#> [1] -0.6436627 -0.5135344 1.2984521 0.9901563 -0.8190061
#>
#> [[3]]
#> [1] 9.608681 7.975333 9.062700 8.481350 9.700701

This is, of course excessive for this small example!

One thing to be aware of is that we need to be very careful handling random number generation
in relation to parallelisation. There are many options for how you might want to set this up,
see R-bloggers for more details.
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12.9 Sometimes R doesn’t cut it

RCPP: An API for running C++ code in R. Useful when you need:

• loops to be run in order
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• lots of function calls (e.g. deep recursion)
• optimised data structures

Rewriting R code in C++ and other low-level programming languages is beyond our scope,
but good to know exists. Starting point: Advanced R Chapter 25.

12.10 Wrapping up

Summary

1. Pick you battles wisely
2. Target your energy with profiling
3. Scale loops with vectors
4. Scale loops in parallel processing
5. Scale in another language

Help!

• Articles and blog links
• The R inferno (Circles 2-4)
• Advanced R (Chapters 23-25),
• Efficient R (Chapter 7).
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Checklist

Important

Effective Data Science is still a work-in-progress. This chapter is currently a dumping
ground for ideas, and we don’t recommend reading it.
If you would like to contribute to the development of EDS, you may do so at https:
//github.com/zakvarty/data_science_notes.

Videos / Chapters

□ Reproducibility (26 min) [slides]

□ Explainability (16 min) [slides]

□ Scalability (30 min) [slides]

Reading

Use the Preparing for Production section of the reading list to support and guide your ex-
ploration of this week’s topics. Note that these texts are divided into core reading, reference
materials and materials of interest.

Activities

This week has fewer activities, since you will be working on the first assessment.

Core

• Read the LIME paper, which we will discuss during the live session.

• Work through the understanding LIME R tutorial

• Use code profiling tools to assess the performance of your rolling_mean() and
rolling_sd() functions. Identify any efficiencies that can be made.

214

https://github.com/zakvarty/data_science_notes
https://github.com/zakvarty/data_science_notes
https://imperial.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=f48d43b4-b370-4cfb-a438-af9e00bf79b5
https://github.com/zakvarty/effective-data-science-slides-2022/raw/main/04-01-reproducibility/04-01-reproducibility.pdf
https://imperial.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=f2c64757-faea-470f-9dfc-af9e00ba4929
https://github.com/zakvarty/effective-data-science-slides-2022/raw/main/04-02-explainability/04-02-explainability.pdf
https://imperial.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=5305fbb1-8dc9-4232-82d0-afa00187f942
https://github.com/zakvarty/effective-data-science-slides-2022/raw/main/04-03-scalability/04-03-scalability.pdf
https://cran.r-project.org/web/packages/lime/vignettes/Understanding_lime.html


Bonus:

• Write two functions to simulate a homogeneous Poisson process with intensity 𝜆 > 0 on
the interval (𝑡1, 𝑡2) ⊂ ℝ. The first should use the exponential distribution of inter-event
times to simulate events in sequence. The second should use the Poisson distribution of
the total event count to first simulate the number of events and then randomly allocate
locations over the interval. Evaluate and compare the reproducibility and scalability of
each implementation.

Live Session

In the live session we will begin with a discussion of this week’s tasks. We will then break into
small groups for a reading group style discussion of the LIME paper that was set as reading
for this week.
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Part VI

Data Science Ethics
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Part VII

Introduction
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When carrying out a data science project, ethical concerns can arise at many stages.

This week we focus on the two most common, privacy and fairness. We explore case studies
where these ethical principles have been violated in the past and investigate how technical
measures and professional guidelines can help to prevent such events from occurring again in
the future.
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13 Privacy

13.1 Privacy and Data Science

Data privacy is all about keeping people’s personal information confidential and secure. It’s the
idea that people have control over their personal data, and that companies and organizations
are responsible for protecting it. Personal data can include things like names, addresses, phone
numbers, email addresses, medical information, and even online activity.

What is personal data?

• Name, national insurance number, passport number
• Contact details: address, phone number, email address
• Medical history
• Online activity, GPS data, finger print or face-ID,

Should not be collected, analysed or distributed without consent.

Under the concept of data privacy, individuals have the right to know what information is
being collected about them, how it’s being used, who it’s being shared with, and to have the
ability to control that information. Companies and organizations, on the other hand, have
a responsibility to keep this information secure and to use it only for the purpose it was
intended.

It’s important to remember that with the growing use of machine learning and data science
methods, personal information is being collected, stored, and shared more than ever before.
This makes data privacy a critical issue to our work as data scientists. By ensuring that
personal information is handled responsibly and with respect for people’s privacy, we can build
trust and confidence in the digital world. In this section of the course I hope to introduce you
to some key ideas around data privacy and use some case studies to demonstrate that privacy
is not an easy thing to ensure.
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13.2 Privacy as a Human Right

13.2.1 Article 12 of the Universal Declaration of Human Rights

No one shall be subjected to arbitrary interference with his privacy, family, home
or correspondence, nor to attacks upon his honour and reputation. Everyone has
the right to the protection of the law against such interference or attacks. - UN
General Assembly, 1948.

The idea of a right to privacy is not a new one. Article 12 of the Universal Declaration of
Human Rights, written in 1948, states that everyone has the right to privacy in their personal
and family life, home and correspondence (this includes communication via the post, telephone,
and email).

This means that everyone has the right to keep their personal information, private and pro-
tected from being disclosed to others without their consent. This right to privacy is essential
for protecting an individual’s autonomy, dignity, and freedom.

The Universal Declaration of Human Rights it is often considered as a benchmark for human
rights and many countries have incorporated its principles into their own laws and regulations.
This means that in many countries the right to privacy is legally protected and people have
the right to take action if their privacy is violated.

This means we have to take particular care in our work as data scientists when handling any
information personal information, whether that is at the individual level or in aggregate.

13.3 Data Privacy and the European Union

13.3.1 General Date Protection Regulation (2018)

‘Consent’ of the data subject means any freely given, specific, informed and unam-
biguous indication of the data subject’s wishes by which he or she, by a statement
or by a clear affirmative action, signifies agreement to the processing of personal
data relating to him or her; - GDPR Article 4

A more recent set of regulations relating to the use of personal data is the General Data
Protection Regulation (GDPR). This is a comprehensive data privacy regulation that went
into effect on May 2018 within the European Union. The purpose of the GDPR is to give
individuals more control over their personal information and how it’s used, and to unify data
protection laws across the EU.
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The GDPR is an extensive legal document that lays down strict rules for how companies and
organizations must handle the personal data of EU citizens, regardless of where that data is
stored or processed.

Some key provisions of the GDPR include the requirement to obtain explicit, informed and
active consent from individuals before the collection and processing of their personal data.
This is precisely why banner notifications about cookies on websites became ubiquitous,

GDPR also establishes the right for individuals to request access to, or deletion of, their
personal data. Furthermore, it states that in the event of a data breach (where unauthorised
access or use of personal data occurs) the data holder must inform the affected individuals
and relevant authorities within 72 hours.

13.4 Privacy: Key Terms

Measuring privacy within a dataset is a complex task that involves assessing the degree to
which personal information is protected from unauthorized access, use, or disclosure. There
are many ways of measuring and increasing the degree of privacy within a data set. To
understand these, and the literature on data privacy, it helps to be familiar with a few key
terms.

Pseudonmisation: processing data so that it does not relate to an identifiable
person.

A data entry is pseudonymised when it has been processed in a way that it does not relate to
an identifiable person. The key word here is identifiable. Replacing your name with your CID
would be considered a form of pseudonymisation, because based on that information alone you
cannot be identified.

Re-identification: relating a pseudonymised data entry to an identifiable person.

Re-identification is the act of relating a pseudonymised data entry to an identifiable person.
Re-identification makes something about that person known that wasn’t known beforehand,
perhaps by using processing techniques or cross-referencing against external information. In
the previous grading scenario, re-identification occurs after marking so that your grades can
be returned to you.

Anonymisation: A pseudonmisation method that precludes re-identification.

Anonymisation is a word that in casual usage is often conflated with our previous definition
of pseudonymisation. In the technical sense, anonymisation is any form of pseudonymisation
that precludes the possibility of re-identification.
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We don’t want to anonymise test scores, or we would not be able to map them back to
individual students. However, if grades were to be published online then we would want to
ensure that this is only done in an anonymised format.

13.5 Measuring Privacy

13.5.1 Pseudo-identifiers and 𝑘-anonymity

Pseudo-identifiers: Attributes that can also be observed in public data. For exam-
ple, someone’s name, job title, zip code, or email.

For the set of quasi-identifiers 𝐴1, … , 𝐴𝑝, a table is 𝑘-anonymous if each possible
value assignment to these variables (𝑎1, ..., 𝑎𝑛) is observed for either 0 or at least 𝑘
individuals.

𝑘-anonymity is a technique that ensures each combination of attributes within a table, is shared
by at least k records within that dataset. This ensures that each individual’s data can’t be
distinguished from at least 𝑘 − 1 other individuals.

This provides some rudimentary level of privacy, where 𝑘 corresponds to the size of smallest
equivalence class of pseudo-identifiers within the data. Therefore larger values of 𝑘 correspond
to greater levels of privacy.

To see this more concretely, let’s take a look at an example.

13.5.2 𝑘-anonymity example

In this example we have a dataset recording visits to a sexual health clinic. We wish to establish
the 𝑘-anonymity of this data set, where the diagnosed condition should be kept private. To
do help with this, the drug use status has been removed for all patients and only partial
information is available about their postcode and age.

Post Code Age Drug Use Condition
1 OX1**** <20 * Herpes
2 OX1**** <20 * Herpes
3 OX2**** >=30 * Chlamydia
4 OX2**** >=30 * Herpes
5 OX1**** <20 * Gonorrhoea
6 OX2**** >=30 * Gonorrhoea
7 OX1**** <20 * Gonorrhoea
8 LA1**** 2* * Chlamydia
9 LA1**** 2* * Chlamydia
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Post Code Age Drug Use Condition
10 OX2**** >=30 * Gonorrhoea
11 LA1**** 2* * Chlamydia
12 LA1**** 2* * Chlamydia

By grouping observations by each distinct combination of pseudo-identifiers we can establish
the equivalence classes within the data.

Post Code Age Drug Use Condition Equivalence Class
1 OX1**** <20 * Herpes 1
2 OX1**** <20 * Herpes 1
3 OX2**** >=30 * Chlamydia 2
4 OX2**** >=30 * Herpes 2
5 OX1**** <20 * Gonorrhoea 1
6 OX2**** >=30 * Gonorrhoea 2
7 OX1**** <20 * Gonorrhoea 1
8 LA1**** 2* * Chlamydia 3
9 LA1**** 2* * Chlamydia 3
10 OX2**** >=30 * Gonorrhoea 2
11 LA1**** 2* * Chlamydia 3
12 LA1**** 2* * Chlamydia 3

Here we have three distinct equivalence classes, each with four observations. Therefore the
smallest equivalence class is also of size four and this data set is 4-anonymous.

While we can easily identify the equivalence classes in this small dataset, doing so in large
datasets is a non-trivial task.

13.6 Improving Privacy

There are three main ways that you can improve the level of privacy within your data, and we
have seen examples of two of these already.

Redaction may be applied to individual or to an attribute, leading to a whole row or column
being censored. This is quite an extreme approach: it can lead to a large amount of information
being removed from the data set. However, sometimes redacting a full row is necessary; for
example when that row contains identifying information like a person’s name or national
insurance number. An additional concern when redacting rows from your data is that it will
artificially alter the distribution of your sample, making it unrepresentative of the population
values.
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Aggregation or coarsening is a second approach where the level of anonymity can be increased
by binning continuous variables into discrete ranges or by combining categories within a vari-
able that already takes discrete values. The idea here is to reduce the number of equivalence
classes within the quasi-identifiers so that the level of k-anonymity is increased.

A similar approach is to corrupt or obfuscate the observed data by adding noise to the
observations, or permuting some portion of them. The aim is to retain overall patterns but
ensure individual recorded values no longer correspond to an individual in the raw data set.
The difficulty here is in setting the type and amount of noise to be added to the data to grant
sufficient privacy without removing all information from the dataset.

This trade-off between information loss and privacy is a common theme throughout all of these
methods.

13.7 Breaking 𝑘-anonymity

𝑘-anonymity ensures that there are at least 𝑘−1 other people with your particular combination
of pseudo-identifiers. What it does not do is ensure that there is any variation within a
particular group. The dataset on sexual health we just saw was 4-anonymous, but if we know
a person how attended the clinic was from a Lancashire (LA) postcode (and in their 20s)
then we know for certain that they have Chlamydia. An alternative privacy measure called
𝑙-diversity tries to address this issue.

Post Code Age Drug Use Condition
8 LA1**** 2* * Chlamydia
9 LA1**** 2* * Chlamydia
11 LA1**** 2* * Chlamydia
12 LA1**** 2* * Chlamydia

A second problem with 𝑘-anonymity is that this type of privacy measure is focused entirely
on the data available within this dataset. It does not take into account data that might be
available elsewhere or might become publicly available in the future. An external data-
linkage attack can cross-reference this table against other information to reduce the size of
equivalence classes and reveal personal information.
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13.8 Cautionary tales

13.8.1 Massachussets Medical Data

Medical research is often slow because it is very difficult to share medical records while main-
taining patients’ privacy. In the 1990s a government agency in Massachusetts wanted to
improve this by releasing a dataset summarising the hospital visits made by all state employ-
ees. They were understandably quite careful about this, making this information available
only to academic researchers and redacted all information like names, addresses and security
numbers. They did include the the patient’s date of birth, zip code, and sex - this informa-
tion was deemed sufficiently general while allowing difference in healthcare provision to be
investigated.

Latanya Sweeney is now a pre-eminent researcher in the field of data privacy. In the 1990s
she was studying for a PhD and MIT and wanted to demonstrate the potential risks of de-
anonymising this sort of data. To demonstrate her point she chose to focus on the public records
of Massachusetts’ governor, William Weld. For a small fee, Sweeney was able to obtain the
voter registration records for the area in which the governor lived. By cross-referencing the two
datasets Sweeney was able to uniquely identify the governors medical history and send them
to him in the post. This was particularly embarrassing for Weld. since he had previously given
a statement reassuring the public that this data release would not compromise the privacy of
public servants.

This interaction between Sweeney and the Governor of Massachusetts was significant because
it highlighted the potential privacy risks associated with the release of publicly available in-
formation. It demonstrated that even when data is stripped of names and other identifying
information, it can still be possible to re-identify individuals and potentially access sensitive
information. The problem here only grows with the dimension of the dataset - the more char-
acteristics that are measures the greater the chance of one person having a unique combination
of those.

13.8.2 Neflix Competition

In 2006 Netflix announced a public competition to improve the performance of their recom-
mender system with a pros of 1 million USD to the first person or group to improve its
performance by at least 10%. For this competition over 100 million ratings from 480,000 users
were made public. Each entry contained a pseudonymised user ID, a film id, the rating out of
5 stars and the date that rating was given.

User ID Film ID Rating Date
000001 548782 5 2001-01-01
000001 549325 1 2001-01-01
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User ID Film ID Rating Date
… … … …

Although the Netflix team had pseudonymised the data (and taken other steps like adding noise
to the observations), two researchers at the University of Texas were able to successfully re-
identify a 96% of individuals within the data. They did this by cross reference the competition
dataset against reviews on the openly available internet movie database (IMDb), working on
the supposition that users would rate films on both services at approximately the same time -
the 96% figure uses a margin of 3 days.

The researchers went further, showing that if we were to alter the data to achieve even a modest
2-anonymity then almost all of the useful information would be removed from competition data
set.

This example should show how difficult it can be to ensure individual privacy in the face of
unknown external data sources. It might seem like a trivial example compared to medical
records but the media that you consume, and in particular how you rate that media, cam
reveal you religious beliefs, your political stance or your sexual orientation. These are protected
characteristics that you might not want to broadcast freely.

It might not be important if you, or even the average Netflix user, if that information becomes
public. What is important is whether any user would find this privacy breach objectionable
and potentially come to harm because of it.

13.9 Wrapping Up

• Privacy is a fundamental concern.
• Privacy is hard to measure and hard to ensure.
• Also a model issue, since models are trained on data.
• No universal answers, but an exciting area of ongoing research.

Although we have only scratched the surface of privacy in data science, we will have to wrap
this video up here.

We have seen that privacy should be a fundamental concern when working with any from of
human-related data. This is chiefly because we aren’t in a position to determine what types of
privacy breach might significantly and negatively impact the lives of the people we hold data
about.

We have seen through one example metric that privacy can be both difficult to measure and
even more difficult to preserve. This is not only an issue when releasing data into the world,
but also when publishing models trained on this data. Approaches analogous to those used by
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Figure 13.1: Latanya Sweeney Speaking in New York, 2017. Image CC-4.0 from Parker Hig-
gins.
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Figure 13.2: Netflix logo 2001-2014. Public domain image.

Latanya Sweeney’s can be used be used by bad-actors to identify with high precision whether
a given individual was included within the data that was used to train a published model.

There are no universal answers to the question of privacy in data science, this is what makes
it an exciting area of ongoing research. It is also for this reason that a lot of Sweeney’s work
was published only after overcoming great resistance: it exposed systematic vulnerabilities for
which there are currently few reliable solutions.
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14 Fairness

14.1 Fairness and the Data Revolution

Before the 1990s, large datasets were typically only collected to understand huge, complex
systems. These systems might be the weather, public infrastructure (e.g. hospitals, roads or
train networks), the stock market or even populations of people.

Collecting high quality data on these systems was immensely expensive but paid dividends by
allowing us to describe the expected behaviour of these systems at an aggregate level. Using
this sort of information, we can’t make journeys or healthcare better at an individual level but
we can make changes to try and make these experiences better on average.

Things changed with the widespread adoption of the internet in the mid-1990s and the sub-
sequent surge in data collection, sharing and processing. Suddenly, we as individuals shifted
from being just one part of these huge processes to being a complex process worth of modelling
all on our own.
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Figure 14.1: Volume of data created, captured, copied, and consumed worldwide from 2010 to
2022.

It was at this point that focus shifted toward making individual, personalised predictions for
specific people, based on the vast amounts of data that we generate as we go about our daily
lives.

This shift from aggregate to individual behaviour creates the opportunity not only for these
predictions to systematically harm groups of people, as they always could, but also to acutely
harm individuals.

14.2 You are Your Data

The blunt truth is that, as far as a data science model is concerned, you are nothing more
than a point in a high-dimensional predictor space.

The model might use your location in that space to group you with other points that are in
some sense “nearby”. Alternatively, the model might estimate some information about you
that it currently doesn’t have, based on what it knows about those surrounding points. These
other points also represent unique humans with rich and fascinating lives - but the model
doesn’t care about that, it is just there to group some points or predict some values.

The idea of fairness comes into data science when we begin to ask ourselves which predictors
we should provide the model with when carrying out these tasks. We aren’t asking this from a

230



You are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor spaceYou are just a point in predictor space

−6

−3

0

3

6

−5.0 −2.5 0.0 2.5
x_1

x_
2

−6

−3

0

3

6

−5.0 −2.5 0.0 2.5
x_1

x_
2

Classification

−6

−3

0

3

6

−5.0 −2.5 0.0 2.5
x_1

x_
2

−10

0

10

20

30

y

Regression

231



model selection stand-point. We are asking what are morally permissible predictors, not what
leads to a significant improvement in model fit.

14.3 Forbidden Predictors

The argument about what features of a human being can be used to make decisions about
them started well before the 1990s. The most contentious of these arguments centre around
the inclusion of characteristics that are either immutable or not easily changed. Some of these
characteristics including race, gender, age or religion receive legal protections. These protected
attributes are often forbidden to be used in important decisions, such as whether a bank loan
is accepted.

This natural lead us to ask what classifies as an important decision?

Protected Characteristics under the Equality Act (2010)

• age
• gender reassignment
• marriage / civil partnership
• pregnancy / parental leave
• disability

• race including colour, nationality, ethnic or national origin
• religion or belief
• sex
• sexual orientation

We also need to be careful if these protected attributes actually have strong predictive power
and would improve our predictions (potentially to the benefit of the groups that are being
protected by these regulations). Just because a protected attribute isn’t used directly within
a model that doesn’t mean the model will not discriminate according to that attribute.

If we have multiple predictors within a model, then withholding a protected attribute does not
make the model ignorant of that attribute. If you have access to someone’s browsing history,
where they live and some of their recent purchases you can probably make a fairly accurate
profile of that person, including many of these supposedly protected attributes. In the same
way, a model can use or combine attributes that are not legally protected to create a new
variable that acts as an accurate proxy for the protected characteristic.
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And why wouldn’t our model do this? When using a standard loss function we have literally
asked it to get the best possible predictive performance. If a protected attribute has predictive
power then the model is likely to approximate it using the predictors that are available to it.

Before we see how to handle this concern, let’s step back and consider how we can quantify
and measure fairness in a model.

14.4 Measuring Fairness

Converting the concept of fairness into a mathematical statement is a very difficult task.
This is partly because moving from natural language to precise formalism is hard, but it’s
also because the term fairness means different things to different people in different contexts.
Because of this, there are many complementary definitions of fairness that all try to capture
some intuitive notion of a fair model. However, these measures all capture different facets of
this complicated concept. Despite this, these measures vary to such an extent they can’t all
be satisfied simultaneously.

I’ll introduce four such measures shortly, focusing in on the case of binary outcomes where
a “positive” response of 1 corresponds to an event that would be considered favourably when
taken in context. For example this might be a loan that will be successfully repaid or that a
person released on bail will not re-offend.

• Binary outcome 𝑌 ∈ {0, 1}.

We’ll consider the simple case where a binary prediction is made in each instance, and where
we want our predictions to be fair across the 𝑘 distinct levels of some protected attribute 𝐴.

• Binary Prediction ̂𝑌 ∈ {0, 1}.
• Protected attribute 𝐴 takes values in 𝒜 = {𝑎1, … , 𝑎𝑘}.

14.4.1 Demographic Parity

The first, and potentially most obvious fairness definition is that of demographic parity. Here
a model is deemed fair if, across all subgroups of the protected attribute, the probability of
predicting a successful outcome is equal.

The probability of predicting a ‘positive’ outcome is the same for all groups.

ℙ( ̂𝑌 = 1|𝐴 = 𝑎𝑖) = ℙ( ̂𝑌 = 1|𝐴 = 𝑎𝑗), for all 𝑖, 𝑗 ∈ 𝒜.

An obvious shortcoming demographic parity is that it does not allow us to account for the fact
that a positive outcome might not be equally likely in each of these subgroups. In this way
demographic parity is analogous to treating people equally, rather than equitably.
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14.4.2 Equal Opportunity

Equality of opportunity addresses this shortcoming by conditioning on a truly positive outcome.
Equality of opportunity states that of those who are “worthy” of a loan (in some sense), all
subgroups of the protected characteristic should be treated equally.

Among those who have a true ‘positive’ outcome, the probability of predicting a
‘positive’ outcome is the same for all groups.

ℙ( ̂𝑌 = 1|𝐴 = 𝑎𝑖, 𝑌 = 1) = ℙ( ̂𝑌 = 1|𝐴 = 𝑎𝑗, 𝑌 = 1), for all 𝑖, 𝑗 ∈ 𝒜.

14.4.3 Equal Odds

Of course, you have encountered two-way tables, type-I and type-II errors. Equally important
as granting loans to people who will repay them is to deny loans to those who cannot afford
them.

A model satisfying the equal odds condition can identify true positives and false negatives
equally well across all sub-groups of the protected characteristic.

Among those who have a true ‘positive’ outcome, the probability of predicting a
‘positive’ outcome is the same for all groups.

AND

Among those who have a true ‘negative’ outcome, the probability of predicting a
‘negative’ outcome is the same for all groups.

ℙ( ̂𝑌 = 𝑦|𝐴 = 𝑎𝑖, 𝑌 = 𝑦) = ℙ( ̂𝑌 = 𝑦|𝐴 = 𝑎𝑗, 𝑌 = 𝑦), for all 𝑦 ∈ {0, 1} and 𝑖, 𝑗 ∈ 𝒜.

14.4.4 Predictive Parity

All of the measures we have considered so far consider the probability of a prediction given
the true credit-worthiness of an applicant. Predictive Parity reverses the order of conditioning
(as compared to equal opportunity).

It ensures that among those predicted to have a successful outcome, the probability of a truly
successful outcome should be the same for all subgroups of the protected characteristic. This
ensures that, in our financial example, the bank is spreading its risk exposure equally across all
subgroups; each subgroup should have an approximately equal proportion of approved loans
being successfully repaid.
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The probability of a true ‘positive’ outcome for people who were predicted a ‘posi-
tive’ outcome is equal across groups.

ℙ(𝑌 = 1| ̂𝑌 = 1, 𝐴 = 𝑎𝑖) = ℙ(𝑌1 = 1| ̂𝑌 = 1, 𝐴 = 𝑎𝑗) for all 𝑖, 𝑗 ∈ 𝒜.

We can play devil’s advocate here and say that this might not be appropriate if there is a
genuine difference in the probability of successful repayment between groups.

14.5 Metric Madness

Even with this very simple binary classification problem that there are many ways we can
interpret the term fairness. Which, if any, of these will be appropriate is going to be highly
context dependent.

An issue with many of these metrics, including some of those introduced, is that they require
knowledge of the true outcome. This means that these metrics can only be evaluated retro-
spectively: if we knew this information to begin with then we wouldn’t need a model to decide
who get a loan. On top of this, it means that we only ever get information about the loans
that are granted - we don’t have access to the counter factual outcome of whether a loan that
was not granted would have been repaid.

An additional problem is that evaluating these fairness metrics requires us to know which
protected sub-group each individual belongs to. This is clearly a problem: to evaluate the
fairness of our loan applications we need to know sensitive information about the applicants,
who would - very reasonably - be unwilling to provide that information because it legally cannot
be used to inform the decision making process. For this reason, an independent third-party is
often required to assess fairness by collating data from the applicants and the bank.

A third complication here is that these definitions deal in strict equalities. In any given sample,
these are almost surely not going to be satisfied even if the metric is truly satisfied. A formal
statistical test should be used to assess whether these differences are consistent with a truly fair
model, however the more common approach is for regulators to set some acceptable tolerance
on the discrepancy in metric values between sub-groups.

Finally, it is worth noting that all of these problems arise for a simple binary classifier but
most models are far more complicated than this. Even working with these conditional prob-
ability statements requires careful attention, but things get much trickier when the response
or sensitive attribute are continuous valued or when other, non-sensitive predictors are also
included in the model.
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14.6 Modelling Fairly

14.6.1 Fairness Aware Loss Functions

Now we have some methods to detect and quantify the fairness of our models, how do we
incorporate that into the model fitting process?

We now have multiple objectives: to predict our outcome as accurately as possible while also
treating people as fairly as possible (by which ever fairness metric or combination of metrics
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we care to consider). Unfortunately, these things are generally in competition with each other.
There is no one best model but rather a family of best models, from which we have to pick a
single model to implement.

Can resolve this issue by linearisation, create our loss function as a linear weighted sum of
the two component objectives. This simplifies the problem mathematically, but actually just
shift the problem rather than resolving it. Up to scaling constant, each combination of weights
corresponds to a unique point on the Pareto frontier, so we have just translated our problem
from picking a point on the frontier to picking a pair of weights.

To do actually resolve this issue we need to define our relative preference between fairness and
predictive power. When I say “our preference”, what I actually mean that of the company or
organisation for whom we are doing an analysis - not our own personal view. Eliciting this
preference and communicating the idea of an optimal frontier can be tricky. One solution is
to present a small set of possible models, which represent a range of preferences between the
two competing objectives, and ask the stakeholder to choose between these.

14.6.2 Other Approaches

• Re-weighting or resampling to better represent minority groups.
• Forgetting factor to reduce impact of bias in historical data.
• Meta-modelling to intervene in harmful feedback loops.

Whenever we treating all predictions equally and our loss function optimises purely for predic-
tive performance, good predictions for minority groups will never be prioritised. One strategy
to correct for this is to either re-weighting or re-sample each observation so that minority
groups are given greater importance within the loss function.

A lot of the problems of fairness that we see are because our models are replicating what
happens or used to happen in reality. In some cases, this is being better addressed now and
a model can be made more fair by down-weighting training data as it ages. This allows our
model to more quickly adapt to changes in the system it is trying to represent.

In other cases the use of historically biased data to train models that are put into production
has lead to a feedback loop that makes more recent data even more unjust. One example of
this, we can consider racial disparity in the interest rates offered on mortgages. Suppose that
one racial group of applicants was in the past slightly more likely to default on loans, perhaps
due to historical pay inequity. This means that models would likely suggest higher interest
loans to this group, in an attempt to offset the bank’s exposure to the risk of non-repayment.

This not only reduces the number of loans that will be granted to that racial group but it also
makes the loans that are granted more difficult to repay and more likely to be defaulted on.
This in turn leads to another increase in the offered interest rate, driving down the number of
loans approved and pushing up the chance of non-repayment even further.
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The decisions made using this model are impacting its future training data and creating a harm-
ful and self-reinforcing feedback loop. Historical down weighting will do nothing to address
this sort of issue, which requires active intervention.

A meta-modelling approach is possible type of intervention. Here post-hoc methods used to
estimate the biases within a fitted model and these estimates are used to explicitly correct for
historical biases, before the model is used to make predictions or decisions.

14.7 Wrapping Up

That’s a good point for us to wrap up this introduction to fairness in data science.

We have seen that optimising for predictive accuracy alone can lead to unjust models. We
also raised concerns about protected characteristics being included in models, whether that is
directly as a predictor or via a collection of other predictors that well approximate them.

We have seen that there are a multitude of measures to assess the fairness of our models. We
can combine these with standard metrics for goodness-of-fit to create custom loss functions
which represent our preference between fairness and predictive performance.

As with privacy, there are no universal answers when it comes to measuring and implementing
fair data science methodology. This is still a relatively new and rapidly evolving field of data
science.
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15 Codes of Conduct

15.1 Data Science: Miracle Cure and Sexiest Job

It has been more than 10 years since it was proclaimed that data science was the sexiest job
of the century. Current turbulence in the technology sector may have you questioning the
veracity of that claim, but it still rings true if we take a less myopic view of where data science
is used.

Data science and machine learning are being used more extensively than ever across fields
including medicine, healthcare and sociology. Data science is also applied to understand
our environment, study ecological systems and inform our strategies for their preservation. In
addition to this, data science is used widely across the private sector, where it informs business
strategies and financial services, alongside the public sector where it influences governance and
policy development.

15.2 What could go wrong?

While data science methods can be wonderful, they are not infallible. As the number of use
cases increases, we should also expect that the number of misuses or high-profile failures to
increase too.

These two news articles highlight just how badly this can all go.

The first article shows how a combination of non-representative training data and lack of
consideration on the part of developers led to a facial recognition system that was much less
accurate for people with darker skin. This is absolutely unacceptable, particularly given the
widespread use of similar systems in important security applications such as biometric ID for
online banking or automatic passport gates.

A second example shows the risk of catastrophic failures in self-driving cars. We know that
misclassification and missed edge cases are inevitable and that in the case of self-driving cars
these errors can cause serious and even fatal accidents. We might then ask ourselves if these
errors are acceptable if they lead to fewer accidents or fatalities than would be caused by
human drivers.
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Figure 15.1: Title of Harvard Business Review article: Is data scientist still the sexiest job of
the 21st Century?
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Figure 15.2: BBC news article: facial recognition fails on race, government study says.
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Figure 15.3: BBC news article: Uber’s self-driving operator charged over fatal crash.
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Another important point to establish is where liability falls in such cases: should it be with
the operator of the self-driving vehicle, the vendor who solid it or the data scientist who wrote
the script controlling the car’s actions? If this behaviour was determined by training data for
test-drives, should that driver share in the liability.

These are all important questions that we haven’t necessarily thought to ask before deploying
data science solutions into the world.

15.3 That’s not my type of data science …

You might be thinking at this doesn’t effect you because you don’t work in image analysis or on
self-driving cars, but related issues come up in more standard applications of data science.

Consider a retailer implementing targeted promotions. They might combine previous shopping
habits and recent product searches to target their offers.

Figure 15.4: Predicting pregnancy from search and purchase history.

Around 7 months ago, one customer stopped regularly buying contraceptives and alcohol and
started buying supplements for vitamin D and folic acid. Based on similar behaviour by lots of
other customers, a recommender model might now expect a good way to increase sales would
be to send that customer offers for nappies, baby food and talcum powder.

This could be seriously upsetting if that customer also happened to be experiencing fertility
issues or had been pregnant but had an abortion or miscarriage. It is important that human-
overrides are included in such systems like this so that the customer could contact the retailer
and prevent this sort of advertising from continuing to happen for months or years to come.
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15.4 Technological Adoption Relies on Public Trust

Figure 15.5: Thirteen people were killed and 145 injured during the Interstate 35W bridge
collapse in 2007.

Data science is a new discipline, which means that some of the issues we have mentioned are
new and happening for the first time. However, many of these issues are not unique to data
science and that means we can learn from other disciplines that have already invested a lot of
time and energy into those problems.

Across many other professions it’s standard to follow a professional code of practice or to have
a code of ethics that applies to everyone working in that space. Usually, the professions that
have this in place are also those who are legally liable in some way for the outcomes and
consequences of their work.

The most obvious example of this might be doctors and other medical professionals, but this
holds equally true in many jobs from law to engineering, where practitioner’s work can impact
the freedom or safety of other people. When thinking critically about the practical and ethical
implications of our work as data scientists, we shouldn’t start from scratch but should learn
as much as possible from these other fields.

One profession in particular that we can learn from is medicine. Around the world, doctors
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agree to uphold the privacy of their patients by maintaining medical confidentiality. The also
agree to only act in what they believe to be the best interests of the patient and to do them
no harm. These are both admirable principles that can be tracked directly onto our work in
data science.

Google’s original internal code encapsulated a more extreme version of this non-maleficence
principle, starting with the phrase ‘Don’t be evil’ (thought this was later rephrased to ‘You
can make money without being evil’).

15.5 A Hippocratic Oath for Data Scientists

Figure 15.6: In Weapons of Math Destruction (2016), Cathy O’Neil was among the first authors
to make a call for a Hippocratic oath for data scientists

We’ve seen examples of both the broad and the acute harms that can befall individuals because
of data science. With these in mind, it seems reasonable to expect that data scientists should
have to be aware of the negative impacts of their work and be required to mitigate these
wherever possible.

This is the argument made by Cathy O’Neil in her book Weapons of Math Destruction: data
scientists, and those working with mathematical models more generally, need an equivalent of
the Hippocratic oath that’s used in medicine. To understand why this is necessary, we have
to understand why it is not the case already.

Doing the right thing, in data science as in life,is neither obvious nor easy.

In the most naive sense, negative consequences can come about as a result of a lack of under-
standing or because of unanticipated consequences. This lack of understanding might relate
to the model itself (which might not be explainable) or about the setting in which the model is
being applied (which might require domain specific expertise that the data scientist lacks).

Alternatively, this ignorance can be about the groups of people who are most at risk of harm
from data science models. Data science methods tend to model expected behaviour and echo
biases from within the training data. This means that minority groups or groups that have
been historically disadvantaged are most at risk of further harm. This same minority status
or historical disadvantage means that these same groups have low representation within data
science teams. This increases the chance that data science teams are ignorant of or ignore the
breadth and depth of the damage they might be causing.
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A second way that data science can lead to harm is when incentives are not properly aligned.
As an example we consider a credit scoring application where a data scientist is trying to
include fairness measures in addition to optimising predictive accuracy for loan repayments. If
business incentives are purely based around immediate increases in profit, then this will likely
be very difficult to get put into production. There is a misalignment between the priorities of
the business and the ethics of the data scientist.

As we have seen,some errors are inevitable and sometimes the best we can do is to balance
an inherent trade-off between conflicting priorities or different sources of harm. In these cases
it is vitally important that we highlight this trade-off explicitly and offer decision makers a
range of solutions that they may choose according to their own priorities.

Doing the right thing is neither obvious or easy:

• Lack of understanding,

• Unanticipated consequences

• Incentive structures,

• Inherent trade-offs.

15.6 Codes of Conduct

Membership of a professional body can offer some of the ethical benefits of a Hippocratic oath,
because these memberships often require agreement to abide by a code of conduct.

This provides individual data scientists with accountability for their actions in a broader sense
than through their direct accountability to their employer. This can be helpful as a motivator
to at a high quality and in line with ethical guidelines.

It can also be useful as a form of external support, to convince organisations who employ data
scientists that ethical considerations are an important aspect of our work. There is also the
opportunity for peer-to-peer support, so that best practices can be established and improved
in a unified way across industries, rather than in isolation within individual organisations.
This might be through informal networking and knowledge sharing or through formal training
organised by that professional body.

Data science is still a developing field and there currently is no professional body specifically
dedicated to data science. Instead, data scientists might join one or more related professional
bodies, such as the Royal Statistical Society, the Operational Research Society, or the Society
for Industrial and Applied Mathematics.
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15.7 Wrapping Up

Data Science is still maturing, both as a field of study and as a career path. In combination
with the widespread adoption of data science in recent years, this means that as a discipline
we’re now navigating many new modes of failure and ethical issues. However, not all of these
issues are entirely novel. There is an awful lot that we can learn, borrow or adapt from more
established fields such as medicine, engineering or physics.

It is important that we remain alert to the dangers of our work: both the liability it opens us
up to and the harm we might be causing to others, potentially without being aware of either
of these things. By joining professional bodies and upholding their codes of conduct we can
push back against bad practices and reward good ones.
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Checklist

Videos / Chapters

□ Privacy (19 min) [slides]

□ Fairness (20 min) [slides]

□ Codes of Conduct (14 min) [slides]

Reading

Use the Data Science Ethics section of the reading list to support and guide your exploration
of this week’s topics. Note that these texts are divided into core reading, reference materials
and materials of interest.

Activities

This week has fewer activities, so that you may look over the second assessment before the
end of the course.

Core:

• Read Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classi-
fication by Joy Buolamwini and Timnit Gebru (2018). Proceedings of the 1st Conference
on Fairness, Accountability and Transparency.

• Find an example case study or method relating to ethical data science that has not been
covered in the lectures. Share what you find by writing a short summary of the case
study or method on the discussion forum.

• Skim over the Professional Guidelines listed in the reference materials for this week, in
preparation for the live session.

Bonus

• Complete the Fairness worksheet.
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https://zakvarty.github.io/effective-data-science-resources/activities/fairness-worksheet/fairness-worksheet-questions.html


• Complete the Privacy worksheet.

Live Session

In the live session this week we will begin with a few minutes of Q & A about the assessments.
We will then break into groups to discuss and compare several sets of professional guidelines
on ethical data science.

Finally, if time allows we will round up the session with an activity on randomised response
survey designs or data anonymisation.
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A Reading List

Note

Effective Data Science is still a work-in-progress. This chapter is largely complete and
just needs final proof reading.
If you would like to contribute to the development of EDS, you may do so at https:
//github.com/zakvarty/data_science_notes.

This reading list is organised by topic, according to each week of the course. These are split
into several categories.

• Core Materials: These form a core part of the course activities.

• Reference Materials: These will be used extensively in the course, but should be seen
as helpful guides, rather than required reading from cover to cover.

• Materials of Interest: These will not form a core part of the course, but will give you
a deeper understanding or interesting perspective on the weekly topic. There might be
some fun other stuff in here too.

A.1 Effective Data Science Workflows

Core Materials

• The Tidyverse R Style Guide by Hadley Wickham.

• Wilson, et al (2017). Good Enough Practices in Scientific Computing. PLOS Computa-
tional Biology.

Reference Materials

• R For Data Science Chapters 2, 6 and 8 by Hadley Wickham and Garrett Grolemund.
Chapters covering R workflow basics, a scripting and project based workflow.

• Documentation for the {here} package
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• R Packages Book (Second Edition) by Hadley Wickham and Jenny Bryan.

Materials of Interest

• STAT545, Part 1 by Jennifer Bryan and The STAT 545 TAs

• What they forgot to teach you about R, Chapters 2-4 by Jennifer Bryan and Jim Hester.

• Broman et al (2017). Recommendations to Funding Agencies for Supporting Repro-
ducible Research. American Statistical Association.

• Advanced R by Hadley Wickham Section introductions on functional and object oriented
approaches to programming.

• Atlassian Article on Agile Project Management

• The Pragmatic Programmer, 20th Anniversary Edition Edition by David Thomas and
Andrew Hunt. The section on DRY coding and a few others are freely available.

• Efficient R programming by Colin Gillespie and Robin Lovelace. Chapter 5 considers
Efficient Input/Output is relevant to this week. Chapter 4 on Efficient Workflows links
nicely with last week’s topics.

• Towards A Principled Bayesian Workflow by Michael Betancourt.

• Happy Git and GitHub for the useR by Jennifer Bryan

• Make Tutorial by the Monash Informatics Platform.

• Makefiles for R and LaTeX projects blog post by Rob Hyndman

• Makefile tutorial by Chase Lambert

A.2 Aquiring and Sharing Data

Core Materials

• R for Data Science Chapters 9 - 12 by Hadley Wickham. These chapters introduce
tibbles as a data structure, how to import data into R and how to wrangle that data
into tidy format.
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• Efficient R programming by Colin Gillespie and Robin Lovelace. Chapter 5 considers
Efficient Input/Output is relevant to this week.

• Wickham (2014). Tidy Data. Journal of Statistical Software. The paper that brought
tidy data to the mainstream.

Reference Materials

• The {readr} documentation

• The {data.table} documentation and vignette

• The {rvest} documentation

• The {tidyr} documentation

• MDN Web Docs on HTML and CSS

Materials of Interest

• Introduction to APIs by Brian Cooksey
• R for Data Science (Second Edition) Chapters within the Import section.

This covers importing data from spreadsheets, databases, using Apache Arrow and importing
hierarchical data as well as web scraping.

A.3 Data Exploration and Visualisation

Core Materials

• Exploratory Data Analysis with R by Roger Peng.

Chapters 3 and 4 are core reading, respectively introducing data frame manipulation with
{dplyr} and an example workflow for exploratory data analysis. Other chapters may be useful
as references.

• Flexible Imputation of Missing Data by Stef van Buuren. Sections 1.1-1.4 give a thorough
introduction to missing data problems.
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Referene Materials

• A ggplot2 Tutorial for Beautiful Plotting in R https://www.cedricscherer.com/2019/08/05/a-
ggplot2-tutorial-for-beautiful-plotting-in-r/) by Cédric Scherer.

• The {dplyr} documentation

• RStudio Data Transformation Cheat Sheet

• R for Data Science (First Edition) Chapters on Data Transformations, Exploratory Data
Analysis and Relational Data.

• Equivalent sections in R for Data Science Second Edition

Materials of Interest

• Wickham, H. (2010). A Layered Grammar of Graphics. Journal of Computational and
Graphical Statistics.

• Better Data Visualisations by Jonathan Schwabish

• Data Visualization: A Practical Introduction by Kieran Healy

A.4 Preparing for Production

Core Materials

• The Ethical Algorithm M Kearns and A Roth (Chapter 4)

• Ribeiro et al (2016). “Why Should I Trust You?”: Explaining the Predictions of Any
Classifier.

Reference Materials

• The Docker Curriculum by Prakhar Srivastav.

• LIME package documentation on CRAN.

• Interpretable Machine Learning: A Guide for Making Black Box Models Explainable by
Christoph Molnar.

• Documentation for apply(), map() and pmap()

• Advanced R (Second Edition) by Hadley Wickham. Chapter 23 on measuring perfor-
mance and Chapter 24 on improving performance.
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Materials of Interest

• The ASA Statement on 𝑝-values: Context, Process and Purpose

• The Garden of Forking Paths: Why multiple comparisons can be a problem, even when
there is no “Fishing expedition” or “p-hacking” and the research hypothesis was posited
ahead of time. A Gelman and E loken (2013)

• Understanding LIME tutorial by T Pedersen and M Benesty.

• Advanced R (Second Edition) by Hadley Wickham. Chapter 25 on writing R code in
C++.

A.5 Data Science Ethics

Core Materials

• The Ethical Algorithm M Kearns and A Roth. Chapters 1 and 2 on Algorithmic Privacy
and Algortihmic Fairness.

• Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification
by Joy Buolamwini and Timnit Gebru (2018). Proceedings of the 1st Conference on
Fairness, Accountability and Transparency.

• Robust De-anonymization of Large Sparse Datasets by Arvind Narayanan and Vitaly
Shmatikov (2008). IEEE Symposium on Security and Privacy.

Reference Materials

• Fairness and machine learning Limitations and Opportunities by Solon Barocas, Moritz
Hardt and Arvind Narayanan.

• Professional Guidleines on Data Ethics from:

– The American Mathematical Society
– The European Union
– UK Government
– Royal Statistical Society
– Dutch Government
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Materials of Interest

• Algorithmic Fairness (2020). Pre-print of review paper by Dana Pessach and Erez
Shmueli.
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